Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
U
uva
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Taddeüs Kroes
uva
Commits
21f4863a
Commit
21f4863a
authored
13 years ago
by
Taddeüs Kroes
Browse files
Options
Downloads
Patches
Plain Diff
ImProc ass3: Added mask option to colHist.
parent
2c5a3123
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
improc/ass3/back_projection.py
+43
-27
43 additions, 27 deletions
improc/ass3/back_projection.py
improc/ass3/intersect.py
+5
-4
5 additions, 4 deletions
improc/ass3/intersect.py
with
48 additions
and
31 deletions
improc/ass3/back_projection.py
+
43
−
27
View file @
21f4863a
...
@@ -7,6 +7,32 @@ from scipy.cluster.vq import kmeans
...
@@ -7,6 +7,32 @@ from scipy.cluster.vq import kmeans
from
intersect
import
col2bin
,
domainIterator
,
colHist
,
histogramIntersect
from
intersect
import
col2bin
,
domainIterator
,
colHist
,
histogramIntersect
def
find_peaks
(
b
,
threshold
,
d_sq
):
"""
Find the location of the peak values of a back projection histogram.
"""
# Find all pixels with a value higher than a threshold of the maximum
# value. Collect K-means estimators on-the-fly.
threshold
*=
b
.
max
()
means
=
[]
use
=
[]
for
p
in
domainIterator
(
b
):
if
b
[
p
]
>=
threshold
:
use
.
append
(
p
)
found
=
False
for
mean
in
means
:
if
(
mean
[
0
]
-
p
[
0
])
**
2
+
(
mean
[
1
]
-
p
[
1
])
**
2
<
d_sq
:
found
=
True
break
if
not
found
:
means
.
append
(
p
)
# Use K-means to identify possible matches
m
=
kmeans
(
array
(
use
),
array
(
means
))[
0
]
return
[
m
[
i
].
tolist
()
for
i
in
xrange
(
m
.
shape
[
0
])]
def
convolution
(
image
,
radius
):
def
convolution
(
image
,
radius
):
"""
Calculate the convolution of an image with a specified circle radius.
"""
"""
Calculate the convolution of an image with a specified circle radius.
"""
# Loop to the square that surrounds the circle, and check if the pixel
# Loop to the square that surrounds the circle, and check if the pixel
...
@@ -20,11 +46,14 @@ def convolution(image, radius):
...
@@ -20,11 +46,14 @@ def convolution(image, radius):
return
correlate
(
image
,
mask
,
mode
=
'
nearest
'
)
return
correlate
(
image
,
mask
,
mode
=
'
nearest
'
)
def
hbp
(
image
,
environment
,
bins
,
model
,
radius
):
def
hbp
(
image
,
environment
,
bins
,
model
,
radius
,
**
kwargs
):
"""
Create the histogram back projection of two images.
"""
"""
Create the histogram back projection of two images.
"""
options
=
dict
(
mask
=
None
)
options
.
update
(
kwargs
)
# Create image histograms
# Create image histograms
print
'
Creating histograms...
'
print
'
Creating histograms...
'
M
=
colHist
(
image
,
bins
,
model
)
M
=
colHist
(
image
,
bins
,
model
,
mask
=
options
[
'
mask
'
]
)
I
=
colHist
(
environment
,
bins
,
model
)
I
=
colHist
(
environment
,
bins
,
model
)
# Create ratio histogram
# Create ratio histogram
...
@@ -52,39 +81,24 @@ def hbp(image, environment, bins, model, radius):
...
@@ -52,39 +81,24 @@ def hbp(image, environment, bins, model, radius):
print
'
Creating convolution...
'
print
'
Creating convolution...
'
return
convolution
(
b
,
radius
)
return
convolution
(
b
,
radius
)
def
find_peaks
(
b
,
threshold
,
d_sq
):
def
exclude_color
(
color
,
image
):
"""
Find the location of the peak value of a back projection histogram.
"""
mask
=
zeros
(
image
.
shape
[:
2
],
dtype
=
int
)
# Find all pixels with a value higher than a threshold of the maximum
color
=
array
(
color
)
# value. Collect K-means estimators on-the-fly.
threshold
*=
b
.
max
()
means
=
[]
use
=
[]
for
p
in
domainIterator
(
b
):
if
b
[
p
]
>=
threshold
:
use
.
append
(
p
)
found
=
False
for
mean
in
means
:
if
(
mean
[
0
]
-
p
[
0
])
**
2
+
(
mean
[
1
]
-
p
[
1
])
**
2
<
d_sq
:
found
=
True
break
if
not
found
:
means
.
append
(
p
)
# Use K-means to identify possible matches
for
p
in
domainIterator
(
image
):
m
=
kmeans
(
array
(
use
),
array
(
means
))[
0
]
if
(
image
[
p
]
!=
color
).
any
():
mask
[
p
]
=
1
return
[
m
[
i
].
tolist
()
for
i
in
xrange
(
m
.
shape
[
0
])]
return
mask
if
__name__
==
'
__main__
'
:
if
__name__
==
'
__main__
'
:
print
'
Reading images...
'
print
'
Reading images...
'
waldo
=
imread
(
'
waldo.tiff
'
)
waldo
=
imread
(
'
waldo.tiff
'
)
env
=
imread
(
'
waldo_env.tiff
'
)
env
=
imread
(
'
waldo_env.tiff
'
)
mask
=
exclude_color
([
255
]
*
3
,
waldo
)
import
pickle
import
pickle
b
=
hbp
(
waldo
,
env
,
[
64
]
*
3
,
'
rgb
'
,
4
)
b
=
hbp
(
waldo
,
env
,
[
64
]
*
3
,
'
rgb
'
,
2
,
mask
=
mask
)
pickle
.
dump
(
b
,
open
(
'
projection.dat
'
,
'
w
'
))
pickle
.
dump
(
b
,
open
(
'
projection.dat
'
,
'
w
'
))
#b = pickle.load(open('projection.dat', 'r'))
#b = pickle.load(open('projection.dat', 'r'))
...
@@ -101,7 +115,9 @@ if __name__ == '__main__':
...
@@ -101,7 +115,9 @@ if __name__ == '__main__':
w
,
h
=
waldo
.
shape
[:
2
]
w
,
h
=
waldo
.
shape
[:
2
]
peaks
=
find_peaks
(
b
,
.
28
,
w
**
2
+
h
**
2
)
print
'
Locating peaks...
'
peaks
=
find_peaks
(
b
,
.
2
,
w
**
2
+
h
**
2
)
print
'
Done
'
subplot
(
121
)
subplot
(
121
)
plt
(
peaks
)
plt
(
peaks
)
...
...
This diff is collapsed.
Click to expand it.
improc/ass3/intersect.py
+
5
−
4
View file @
21f4863a
...
@@ -18,23 +18,24 @@ def domainIterator(image, dim=2):
...
@@ -18,23 +18,24 @@ def domainIterator(image, dim=2):
for
z
in
xrange
(
image
.
shape
[
2
]):
for
z
in
xrange
(
image
.
shape
[
2
]):
yield
x
,
y
,
z
yield
x
,
y
,
z
def
colHist
(
image
,
bins
,
model
):
def
colHist
(
image
,
bins
,
model
,
**
kwargs
):
"""
Create the color histogram of an image.
"""
"""
Create the color histogram of an image.
"""
h
=
zeros
(
bins
,
dtype
=
int
)
h
=
zeros
(
bins
,
dtype
=
int
)
use
=
image
.
astype
(
float
)
*
map
(
lambda
x
:
x
-
1
,
bins
)
use
=
image
.
astype
(
float
)
*
map
(
lambda
x
:
x
-
1
,
bins
)
if
model
==
'
rgb
'
:
if
model
==
'
rgb
'
:
use
/=
255
use
/=
255
elif
model
==
'
rgba
'
:
pass
elif
model
==
'
hsv
'
:
elif
model
==
'
hsv
'
:
# TODO: implement HSV color model
# TODO: implement HSV color model
pass
pass
else
:
else
:
raise
ValueError
(
'
Color model
"
%s
"
is not supported.
'
%
model
)
raise
ValueError
(
'
Color model
"
%s
"
is not supported.
'
%
model
)
mask
=
kwargs
[
'
mask
'
]
if
'
mask
'
in
kwargs
else
None
for
p
in
domainIterator
(
image
):
for
p
in
domainIterator
(
image
):
h
[
col2bin
(
use
[
p
])]
+=
1
if
mask
is
None
or
mask
[
p
].
any
():
h
[
col2bin
(
use
[
p
])]
+=
1
return
h
return
h
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment