Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
U
uva
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Taddeüs Kroes
uva
Commits
00f34f99
Commit
00f34f99
authored
Oct 21, 2011
by
Taddeüs Kroes
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
improc ass4: Added usage of 1d convolution in Canny Edge Detector instead of 2d.
parent
fe971e12
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
35 additions
and
20 deletions
+35
-20
improc/ass4/canny.py
improc/ass4/canny.py
+10
-9
improc/ass4/gauss.py
improc/ass4/gauss.py
+25
-11
improc/ass4/report/gauss_times_1d.pdf
improc/ass4/report/gauss_times_1d.pdf
+0
-0
improc/ass4/report/gauss_times_2d.pdf
improc/ass4/report/gauss_times_2d.pdf
+0
-0
No files found.
improc/ass4/canny.py
View file @
00f34f99
...
...
@@ -2,7 +2,8 @@
from
matplotlib.pyplot
import
imread
,
imshow
,
subplot
,
show
from
numpy
import
arctan2
,
zeros
,
append
,
pi
#, argmax
from
numpy.linalg
import
norm
from
gauss
import
gD
from
scipy.ndimage
import
convolve1d
from
gauss
import
Gauss1
,
gD
def
in_image
(
p
,
F
):
"""Check if given pixel coordinates p are within the bound of image F."""
...
...
@@ -18,20 +19,20 @@ def canny(F, s, Tl=None, Th=None):
image F. Optionally specify a low and high threshold (Tl and Th) for
hysteresis thresholding."""
# Noise reduction by a Gaussian filter
#
F = gD(F, s, 0, 0)[1]
F
=
gD
(
F
,
s
,
0
,
0
)[
1
]
# Find intensity gradient
#F = gD(F, s, 2, 2)[1]
Gx
=
gD
(
F
,
s
,
1
,
0
)[
1
]
Gy
=
gD
(
F
,
s
,
0
,
1
)[
1
]
mask
=
Gauss1
(
1
,
1
)
Gx
=
convolve1d
(
F
,
mask
,
axis
=
1
,
mode
=
'nearest'
)
Gy
=
convolve1d
(
F
,
mask
,
axis
=
0
,
mode
=
'nearest'
)
G
=
zeros
(
F
.
shape
)
A
=
zeros
(
F
.
shape
,
dtype
=
int
)
for
x
in
xrange
(
F
.
shape
[
0
]):
for
y
in
xrange
(
F
.
shape
[
1
]):
p
=
(
x
,
y
)
for
y
in
xrange
(
F
.
shape
[
0
]):
for
x
in
xrange
(
F
.
shape
[
1
]):
p
=
(
y
,
x
)
# Gradient norm and angle
# Gradient norm and
rounded
angle
G
[
p
]
=
norm
(
append
(
Gx
[
p
],
Gy
[
p
]))
A
[
p
]
=
int
(
round
(
arctan2
(
Gy
[
p
],
Gx
[
p
])
*
4
/
pi
+
1
))
%
4
...
...
improc/ass4/gauss.py
View file @
00f34f99
...
...
@@ -29,16 +29,29 @@ def Gauss(s):
# Make sure that the sum of all kernel values is equal to one
return
W
/
W
.
sum
()
def
Gauss1
(
s
):
def
gauss
(
x
,
s
):
return
e
**
-
(
x
**
2
/
(
2
*
s
**
2
))
/
(
2
*
pi
*
s
**
2
)
def
gauss_der_1
(
x
,
s
):
return
-
x
*
e
**
-
(
x
**
2
/
(
2
*
s
**
2
))
/
(
2
*
pi
*
s
**
4
)
def
gauss_der_2
(
x
,
s
):
return
(
x
**
2
-
s
**
2
)
*
e
**
-
(
x
**
2
/
(
2
*
s
**
2
))
\
/
(
2
*
pi
*
s
**
6
)
def
Gauss1
(
s
,
order
=
0
):
"""Sample a one-dimensional Gaussian function of scale s."""
f
=
[
gauss
,
gauss_der_1
,
gauss_der_2
][
order
]
s
=
float
(
s
)
size
=
int
(
ceil
(
3
*
s
))
r
=
2
*
size
+
1
W
=
zeros
(
(
r
,)
)
t
=
float
(
s
)
**
2
a
=
1
/
(
2
*
pi
*
t
)
W
=
zeros
(
r
)
#
t = float(s) ** 2
#
a = 1 / (2 * pi * t)
# Sample the Gaussian function
W
=
array
([
a
*
e
**
-
((
x
-
size
)
**
2
/
(
2
*
t
))
for
x
in
xrange
(
r
)])
#W = array([a * e ** -((x - size) ** 2 / (2 * t)) for x in xrange(r)])
W
=
array
([
f
(
x
-
size
,
s
)
for
x
in
xrange
(
r
)])
# Make sure that the sum of all kernel values is equal to one
return
W
/
W
.
sum
()
...
...
@@ -54,11 +67,12 @@ def plot_mask(W, ax, stride):
def
gD
(
F
,
s
,
iorder
,
jorder
):
"""Create the Gaussian derivative convolution of image F."""
funcs
=
[
lambda
x
:
e
**
-
(
x
**
2
/
(
2
*
s
**
2
))
/
(
2
*
pi
*
s
**
2
),
\
lambda
x
:
-
x
*
e
**
-
(
x
**
2
/
(
2
*
s
**
2
))
\
/
(
2
*
pi
*
s
**
4
),
\
lambda
x
:
(
x
**
2
-
s
**
2
)
*
e
**
-
(
x
**
2
/
(
2
*
s
**
2
))
\
/
(
2
*
pi
*
s
**
6
)]
funcs
=
[
gauss
,
gauss_der_1
,
gauss_der_2
]
#funcs = [lambda x: e ** -(x ** 2 / (2 * s ** 2)) / (2 * pi * s ** 2), \
# lambda x: -x * e ** -(x ** 2 / (2 * s ** 2)) \
# / (2 * pi * s ** 4), \
# lambda x: (x ** 2 - s ** 2) * e ** -(x ** 2 / (2 * s ** 2)) \
# / (2 * pi * s ** 6)]
size
=
int
(
ceil
(
3
*
s
))
r
=
2
*
size
+
1
iterator
=
map
(
float
,
range
(
r
))
...
...
@@ -68,7 +82,7 @@ def gD(F, s, iorder, jorder):
for
x
in
iterator
:
for
y
in
iterator
:
W
[
x
,
y
]
=
Fx
(
x
-
size
)
*
Fy
(
y
-
size
)
W
[
x
,
y
]
=
Fx
(
x
-
size
,
s
)
*
Fy
(
y
-
size
,
s
)
return
W
,
convolve
(
F
,
W
,
mode
=
'nearest'
)
...
...
improc/ass4/report/gauss_times_1d.pdf
View file @
00f34f99
No preview for this file type
improc/ass4/report/gauss_times_2d.pdf
View file @
00f34f99
No preview for this file type
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment