Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
U
uva
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Taddeüs Kroes
uva
Commits
fe971e12
Commit
fe971e12
authored
Oct 19, 2011
by
Taddeüs Kroes
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
improc ass4: Implemented Canny Edge Detector.
parent
92553830
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
117 additions
and
13 deletions
+117
-13
improc/ass4/canny.py
improc/ass4/canny.py
+116
-12
improc/ass4/flags.png
improc/ass4/flags.png
+0
-0
improc/ass4/gauss.py
improc/ass4/gauss.py
+1
-1
No files found.
improc/ass4/canny.py
View file @
fe971e12
#!/usr/bin/env python
from
matplotlib.pyplot
import
imread
,
imshow
,
show
from
numpy
import
arctan
from
matplotlib.pyplot
import
imread
,
imshow
,
subplot
,
show
from
numpy
import
arctan2
,
zeros
,
append
,
pi
#, argmax
from
numpy.linalg
import
norm
from
gauss
import
gD
def
canny
(
F
,
s
):
# Noise reduction by a Gauss filter
G
=
gD
(
F
,
s
,
2
,
2
)
def
in_image
(
p
,
F
):
"""Check if given pixel coordinates p are within the bound of image F."""
return
p
[
0
]
>=
0
and
p
[
1
]
>=
0
and
p
[
0
]
<
F
.
shape
[
0
]
and
p
[
1
]
<
F
.
shape
[
1
]
#def zero_crossing(a, b, F):
# """Cech if there is a zero crossing point between F[a] and F[b]."""
# return in_image(a, F) and in_image(b, F) \
# and ((F[a] < 0 and F[b] > 0) or (F[a] > 0 and F[b] < 0))
def
canny
(
F
,
s
,
Tl
=
None
,
Th
=
None
):
"""Apply the Canny Edge Detection algorithm with Gauss scale s to an
image F. Optionally specify a low and high threshold (Tl and Th) for
hysteresis thresholding."""
# Noise reduction by a Gaussian filter
#F = gD(F, s, 0, 0)[1]
# Find intensity gradient
#F = gD(F, s, 2, 2)[1]
Gx
=
gD
(
F
,
s
,
1
,
0
)[
1
]
Gy
=
gD
(
F
,
s
,
0
,
1
)[
1
]
G
=
zeros
(
F
.
shape
)
A
=
zeros
(
F
.
shape
,
dtype
=
int
)
for
x
in
xrange
(
F
.
shape
[
0
]):
for
y
in
xrange
(
F
.
shape
[
1
]):
p
=
(
x
,
y
)
# Gradient norm and angle
G
[
p
]
=
norm
(
append
(
Gx
[
p
],
Gy
[
p
]))
A
[
p
]
=
int
(
round
(
arctan2
(
Gy
[
p
],
Gx
[
p
])
*
4
/
pi
+
1
))
%
4
#p = (x, y)
#compare = [(x, y - 1), (x, y + 1), (x + 1, y - 1), \
# (x - 1, y + 1), (x - 1, y), (x + 1, y), \
# (x - 1, y - 1), (x + 1, y + 1)]
#norms = zeros(8)
#for i, c in enumerate(compare):
# if zero_crossing(p, c, F):
# norms[i] = abs(F[p]) + abs(F[c])
return
G
#m = argmax(norms)
#G[p] = norms[m]
#A[p] = m >> 1
# Non-maximum suppression
E
=
zeros
(
F
.
shape
)
for
x
in
xrange
(
F
.
shape
[
0
]):
for
y
in
xrange
(
F
.
shape
[
1
]):
g
=
G
[
x
,
y
]
a
=
A
[
x
,
y
]
compare
=
[((
x
,
y
-
1
),
(
x
,
y
+
1
)),
((
x
-
1
,
y
-
1
),
\
(
x
+
1
,
y
+
1
)),
((
x
-
1
,
y
),
(
x
+
1
,
y
)),
\
((
x
+
1
,
y
-
1
),
(
x
-
1
,
y
+
1
))]
na
,
nb
=
compare
[
a
]
if
(
not
in_image
(
na
,
G
)
or
g
>
G
[
na
])
\
and
(
not
in_image
(
nb
,
G
)
or
g
>
G
[
nb
]):
E
[
x
,
y
]
=
g
# Only execute hysteresis thresholding if the thresholds are specified
if
Tl
is
None
or
Th
is
None
:
return
E
# Hysteresis thresholding
Tl
*=
(
E
.
max
()
-
E
.
min
())
/
255
Th
*=
(
E
.
max
()
-
E
.
min
())
/
255
T
=
zeros
(
F
.
shape
,
dtype
=
bool
)
# Clear image borders
for
x
in
xrange
(
F
.
shape
[
0
]):
E
[
x
,
0
]
=
E
[
x
,
F
.
shape
[
1
]
-
1
]
=
0
for
y
in
xrange
(
1
,
F
.
shape
[
1
]
-
1
):
E
[
0
,
y
]
=
E
[
F
.
shape
[
0
]
-
1
,
y
]
=
0
# Tracing edges
def
follow_nb
(
x
,
y
):
"""Follow the neighbouring pixels of an edge pixel in E recursively."""
if
T
[
x
,
y
]:
return
T
[
x
,
y
]
=
True
for
nx
in
xrange
(
-
1
,
2
):
for
ny
in
xrange
(
-
1
,
2
):
if
(
nx
!=
0
or
ny
!=
0
)
and
E
[
nx
,
ny
]
>
Tl
:
follow_nb
(
nx
,
ny
)
# Follow edges that have a starting value above Th
for
x
in
xrange
(
F
.
shape
[
0
]):
for
y
in
xrange
(
F
.
shape
[
1
]):
if
E
[
x
,
y
]
>
Th
:
follow_nb
(
x
,
y
)
return
E
,
T
if
__name__
==
'__main__'
:
from
sys
import
argv
,
exit
if
len
(
argv
)
<
2
:
print
'Usage: python %s SCALE'
%
argv
[
0
]
if
len
(
argv
)
<
2
or
len
(
argv
)
==
3
:
print
'Usage: python %s SCALE
[ TL TH ]
'
%
argv
[
0
]
exit
(
1
)
s
=
float
(
argv
[
1
])
F
=
imread
(
'cameraman.png'
)
E
=
canny
(
F
,
s
)
imshow
(
E
,
cmap
=
'gray'
)
#F = imread('flags.png')
s
=
float
(
argv
[
1
])
if
len
(
argv
)
>
3
:
# Execute with tracing edges
E
,
T
=
canny
(
F
,
s
,
float
(
argv
[
2
]),
float
(
argv
[
3
]))
subplot
(
131
)
imshow
(
F
,
cmap
=
'gray'
)
subplot
(
132
)
imshow
(
E
,
cmap
=
'gray'
)
subplot
(
133
)
imshow
(
T
,
cmap
=
'gray'
)
else
:
# Execute until nn-maximum suppression
E
=
canny
(
F
,
s
)
subplot
(
121
)
imshow
(
F
,
cmap
=
'gray'
)
subplot
(
122
)
imshow
(
E
,
cmap
=
'gray'
)
show
()
improc/ass4/flags.png
0 → 100644
View file @
fe971e12
29.2 KB
improc/ass4/gauss.py
View file @
fe971e12
...
...
@@ -57,7 +57,7 @@ def gD(F, s, iorder, jorder):
funcs
=
[
lambda
x
:
e
**
-
(
x
**
2
/
(
2
*
s
**
2
))
/
(
2
*
pi
*
s
**
2
),
\
lambda
x
:
-
x
*
e
**
-
(
x
**
2
/
(
2
*
s
**
2
))
\
/
(
2
*
pi
*
s
**
4
),
\
lambda
x
:
-
(
x
**
2
-
s
**
2
)
*
e
**
-
(
x
**
2
/
(
2
*
s
**
2
))
\
lambda
x
:
(
x
**
2
-
s
**
2
)
*
e
**
-
(
x
**
2
/
(
2
*
s
**
2
))
\
/
(
2
*
pi
*
s
**
6
)]
size
=
int
(
ceil
(
3
*
s
))
r
=
2
*
size
+
1
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment