Commit 3c33b0b3 authored by Richard Torenvliet's avatar Richard Torenvliet

Fix building and 'reconstructing' mean texture from dataset

parent e007d4c1
...@@ -5,7 +5,8 @@ import cv2 ...@@ -5,7 +5,8 @@ import cv2
# local imports # local imports
import pca import pca
from utils.generate_head_texture import fill_triangle, get_colors_triangle from utils.generate_head_texture import fill_triangle, get_colors_triangle, \
get_row_colors_triangle
import utils.triangles as tu import utils.triangles as tu
logging.basicConfig(level=logging.INFO, logging.basicConfig(level=logging.INFO,
...@@ -66,47 +67,40 @@ def build_shape_feature_vectors(files, get_points, flattened=False): ...@@ -66,47 +67,40 @@ def build_shape_feature_vectors(files, get_points, flattened=False):
points = get_points(files) points = get_points(files)
if flattened: if flattened:
points = pca.flatten_feature_vectors(points) points = pca.flatten_feature_vectors(points, dim=0)
return points return points
def sample_from_triangles(image, points2d, triangles, n_samples=80): def sample_from_triangles(src, points2d_src, points2d_dst, triangles):
all_triangles = [] # texture = np.asarray(texture, dtype=np.uint8).reshape((-1, 3))
h, w, c = image.shape triangles_pixels = []
pixels = 0
for tri in triangles: for tri in triangles:
p1 = points2d[tri[0]] src_p1, src_p2, src_p3 = points2d_src[tri]
p2 = points2d[tri[1]] dst_p1, dst_p2, dst_p3 = points2d_dst[tri]
p3 = points2d[tri[2]]
dst = get_row_colors_triangle(
bary_centric_range = np.linspace(0, 1, num=n_samples) src,
pixels = np.full((n_samples * n_samples, 3), fill_value=-1, dtype=np.int) src_p1[0], src_p1[1],
L = np.zeros((3, 1)) src_p2[0], src_p2[1],
src_p3[0], src_p3[1],
for s_i, s in enumerate(bary_centric_range): dst_p1[0], dst_p1[1],
for t_i, t in enumerate(bary_centric_range): dst_p2[0], dst_p2[1],
# make sure the coordinates are inside the triangle dst_p3[0], dst_p3[1]
if s + t <= 1: )
# build lambda's
L[0] = s
L[1] = t
L[2] = 1 - s - t
# cartesian x, y coordinates inside the triangle pixels += dst.flatten().shape[0]
cart_x, cart_y, _ = tu.barycentric2cartesian(p1, p2, p3, L)
pixels[s_i * n_samples + t_i, :] = image[cart_y, cart_x, :]
# cv2.circle(b, tuple([cart_x, cart_y]), 1, color=(0, 255, 100)) triangles_pixels.extend(dst.flatten())
all_triangles.append(pixels[np.where(pixels >= 0)]) result = np.asarray(triangles_pixels, dtype=np.uint8)
return np.asarray(all_triangles, dtype=np.uint8) return result
def build_texture_feature_vectors(files, get_image_with_landmarks, triangles, def build_texture_feature_vectors(files, get_image_with_shape, mean_shape, triangles):
flattened=True):
mean_texture = []
""" """
Args: Args:
files (list): list files files (list): list files
...@@ -116,16 +110,22 @@ def build_texture_feature_vectors(files, get_image_with_landmarks, triangles, ...@@ -116,16 +110,22 @@ def build_texture_feature_vectors(files, get_image_with_landmarks, triangles,
Returns: Returns:
list: list of feature vectors list: list of feature vectors
""" """
mean_texture = []
for i, f in enumerate(files[:1]): mean_shape_scaled = mean_shape.reshape((58, 2))
image, landmarks = get_image_with_landmarks(f) mean_shape_scaled[:, 0] = mean_shape_scaled[:, 0] * 640
mean_shape_scaled[:, 1] = mean_shape_scaled[:, 1] * 480
for i, f in enumerate(files):
image, shape = get_image_with_shape(f)
h, w, c = image.shape h, w, c = image.shape
landmarks[:, 0] = landmarks[:, 0] * w
landmarks[:, 1] = landmarks[:, 1] * h shape[:, 0] = shape[:, 0] * w
shape[:, 1] = shape[:, 1] * h
triangles_colors = sample_from_triangles( triangles_colors = sample_from_triangles(
image, landmarks, triangles, n_samples=80 image, shape, mean_shape_scaled, triangles
) )
mean_texture.append(triangles_colors) mean_texture.append(triangles_colors)
logger.info('processed file: {} {}/{}'.format(f, i, len(files))) logger.info('processed file: {} {}/{}'.format(f, i, len(files)))
...@@ -135,11 +135,8 @@ def build_texture_feature_vectors(files, get_image_with_landmarks, triangles, ...@@ -135,11 +135,8 @@ def build_texture_feature_vectors(files, get_image_with_landmarks, triangles,
# if k == 27: # if k == 27:
# break # break
mean_texture = np.asarray(mean_texture) mean_texture = np.asarray(mean_texture)
#mean_texture = pca.flatten_feature_vectors(mean_texture)
if flattened:
mean_texture = pca.flatten_feature_vectors(mean_texture)
return mean_texture return mean_texture
......
...@@ -84,16 +84,17 @@ def save_pca_model_texture(args): ...@@ -84,16 +84,17 @@ def save_pca_model_texture(args):
assert args.model_shape_file, '--model_texture_file needs to be provided to save the pca model' assert args.model_shape_file, '--model_texture_file needs to be provided to save the pca model'
assert args.model_texture_file, '--model_texture_file needs to be provided to save the pca model' assert args.model_texture_file, '--model_texture_file needs to be provided to save the pca model'
Vt, mean_values, triangles = pca.load(args.model_shape_file) Vt, s, mean_shape, triangles = pca.load(args.model_shape_file)
textures = aam.build_texture_feature_vectors( textures = aam.build_texture_feature_vectors(
args.files, imm.get_imm_image_with_landmarks, triangles, flattened=True args.files, imm.get_imm_image_with_landmarks, mean_shape, triangles
) )
mean_texture = aam.get_mean(textures) mean_texture = aam.get_mean(textures)
_, _, Vt = pca.pca(textures, mean_texture) _, s, Vt = pca.pca(textures, mean_texture)
pca.save(Vt, s, mean_texture, triangles, args.model_texture_file)
pca.save(Vt, mean_texture, triangles, args.model_texture_file)
logger.info('texture pca model saved in %s', args.model_texture_file) logger.info('texture pca model saved in %s', args.model_texture_file)
...@@ -122,12 +123,12 @@ def save_pca_model_shape(args): ...@@ -122,12 +123,12 @@ def save_pca_model_shape(args):
mean_values = aam.get_mean(points) mean_values = aam.get_mean(points)
_, _, Vt = pca.pca(points, mean_values) _, s, Vt = pca.pca(points, mean_values)
mean_xy = mean_values.reshape((-1, 2)) mean_xy = mean_values.reshape((-1, 2))
triangles = aam.get_triangles(mean_xy[:, 0], mean_xy[:, 1]) triangles = aam.get_triangles(mean_xy[:, 0], mean_xy[:, 1])
pca.save(Vt, mean_values, triangles, args.model_shape_file) pca.save(Vt, s, mean_values, triangles, args.model_shape_file)
logger.info('shape pca model saved in %s', args.model_shape_file + '_shape') logger.info('shape pca model saved in %s', args.model_shape_file + '_shape')
...@@ -164,14 +165,25 @@ def show_pca_model(args): ...@@ -164,14 +165,25 @@ def show_pca_model(args):
from utils.triangles import draw_shape, draw_texture from utils.triangles import draw_shape, draw_texture
Vt_shape, mean_values_shape, triangles = pca.load(args.model_shape_file) Vt_shape, s, mean_values_shape, triangles = pca.load(args.model_shape_file)
Vt_texture, mean_values_texture, _ = pca.load(args.model_texture_file) Vt_texture, s_texture, mean_values_texture, _ = pca.load(args.model_texture_file)
# calculate n_components which captures 90 percent of the variance
total = s_texture.sum()
subtotal = 0.0
i = 0
while (subtotal * 100.0) / total <= 90.0:
subtotal += s_texture[i]
i += 1
n_components = i
image = np.full((480, 640, 3), fill_value=255, dtype=np.uint8) image = np.full((480, 640, 3), fill_value=255, dtype=np.uint8)
immPoints = imm.IMMPoints(filename='data/imm_face_db/40-1m.asf') imm_points = imm.IMMPoints(filename='data/imm_face_db/40-1m.asf')
input_image = immPoints.get_image() input_image = imm_points.get_image()
input_points = immPoints.get_points() input_points = imm_points.get_points()
h, w, c = input_image.shape h, w, c = input_image.shape
input_points[:, 0] = input_points[:, 0] * w input_points[:, 0] = input_points[:, 0] * w
...@@ -182,9 +194,9 @@ def show_pca_model(args): ...@@ -182,9 +194,9 @@ def show_pca_model(args):
mean_values_shape[:, 1] = mean_values_shape[:, 1] * h mean_values_shape[:, 1] = mean_values_shape[:, 1] * h
while True: while True:
draw_texture(input_image, image, input_points, mean_values_shape, draw_texture(input_image, image, Vt_texture, input_points, mean_values_shape,
mean_values_texture, triangles, n_samples=80) mean_values_texture, triangles)
draw_shape(image, mean_values_shape, triangles, multiply=False) #draw_shape(image, mean_values_shape, triangles, multiply=False)
cv2.imshow('input_image', input_image) cv2.imshow('input_image', input_image)
cv2.imshow('image', image) cv2.imshow('image', image)
......
...@@ -36,7 +36,7 @@ def reconstruct(feature_vector, Vt, mean_values, n_components=10): ...@@ -36,7 +36,7 @@ def reconstruct(feature_vector, Vt, mean_values, n_components=10):
return np.dot(Vt[:n_components].T, yk) + mean_values return np.dot(Vt[:n_components].T, yk) + mean_values
def save(Vt, mean_values, triangles, filename): def save(Vt, s, mean_values, triangles, filename):
""" """
Store the U, s, Vt and mean of all the asf datafiles given by the asf Store the U, s, Vt and mean of all the asf datafiles given by the asf
files. files.
...@@ -52,7 +52,7 @@ def save(Vt, mean_values, triangles, filename): ...@@ -52,7 +52,7 @@ def save(Vt, mean_values, triangles, filename):
triangles = Vtm[2] triangles = Vtm[2]
""" """
saving = np.asarray([Vt, [mean_values], triangles]) saving = np.asarray([Vt, s, [mean_values], triangles])
np.save(filename, saving) np.save(filename, saving)
...@@ -76,13 +76,14 @@ def load(filename): ...@@ -76,13 +76,14 @@ def load(filename):
Vtm = np.load(filename) Vtm = np.load(filename)
Vt = Vtm[0] Vt = Vtm[0]
mean_values = Vtm[1][0] s = Vtm[1]
triangles = Vtm[2] mean_values = Vtm[2][0]
triangles = Vtm[3]
return Vt, mean_values, triangles return Vt, s, mean_values, triangles
def flatten_feature_vectors(data): def flatten_feature_vectors(data, dim=0):
""" """
Flattens the feature vectors inside a ndarray Flattens the feature vectors inside a ndarray
...@@ -102,6 +103,7 @@ def flatten_feature_vectors(data): ...@@ -102,6 +103,7 @@ def flatten_feature_vectors(data):
Args: Args:
data (numpy array): array of feature vectors data (numpy array): array of feature vectors
dim (int): dimension to flatten the data
return: return:
array: (numpy array): array flattened feature vectors array: (numpy array): array flattened feature vectors
...@@ -109,9 +111,9 @@ def flatten_feature_vectors(data): ...@@ -109,9 +111,9 @@ def flatten_feature_vectors(data):
""" """
flattened = [] flattened = []
rows, _, _ = data.shape n = data.shape[dim]
for i in range(rows): for i in range(n):
flattened.append(np.ndarray.flatten(data[i])) flattened.append(np.ndarray.flatten(data[i]))
return np.array(flattened) return np.array(flattened)
...@@ -18,6 +18,23 @@ cdef inline float cross_product(int v1_x, int v1_y, int v2_x, int v2_y): ...@@ -18,6 +18,23 @@ cdef inline float cross_product(int v1_x, int v1_y, int v2_x, int v2_y):
return (v1_x * v2_y) - (v1_y * v2_x) return (v1_x * v2_y) - (v1_y * v2_x)
cdef inline np.ndarray[double, ndim=1] cartesian2barycentric(
int r1_x, r1_y, int r2_x, int r2_y, int r3_x, int r3_y, int r_x, int r_y):
"""
Given a triangle spanned by three cartesion points
r1, r2, r2, and point r, return the barycentric weights l1, l2, l3.
Returns:
ndarray (of dim 3) weights of the barycentric coordinates
"""
a = np.array([[r1_x, r2_x, r3_x], [r1_y, r2_y, r3_y], [1, 1, 1]])
b = np.array([r_x, r_y, 1])
return np.linalg.solve(a, b)
cdef inline np.ndarray[double, ndim=2] barycentric2cartesian( cdef inline np.ndarray[double, ndim=2] barycentric2cartesian(
int x1, int x2, int x3, int y1, int y2, int y3, int x1, int x2, int x3, int y1, int y2, int y3,
np.ndarray[long, ndim=2] matrix, np.ndarray[long, ndim=2] matrix,
...@@ -35,9 +52,10 @@ cdef inline np.ndarray[double, ndim=2] barycentric2cartesian( ...@@ -35,9 +52,10 @@ cdef inline np.ndarray[double, ndim=2] barycentric2cartesian(
@cython.boundscheck(False) @cython.boundscheck(False)
@cython.wraparound(False) @cython.wraparound(False)
def fill_triangle(np.ndarray[unsigned char, ndim=3] src, def fill_triangle(np.ndarray[unsigned char, ndim=1] src,
np.ndarray[unsigned char, ndim=3] dst, np.ndarray[unsigned char, ndim=3] dst,
int x1, int y1, int x2, int y2, int x3, int y3): int x1, int y1, int x2, int y2, int x3, int y3, int offset,
int index):
""" """
Fill a triangle by applying the Barycentric Algorithm for deciding if a Fill a triangle by applying the Barycentric Algorithm for deciding if a
point lies inside or outside a triangle. point lies inside or outside a triangle.
...@@ -49,26 +67,90 @@ def fill_triangle(np.ndarray[unsigned char, ndim=3] src, ...@@ -49,26 +67,90 @@ def fill_triangle(np.ndarray[unsigned char, ndim=3] src,
cdef int y_min = min(y1, min(y2, y3)) cdef int y_min = min(y1, min(y2, y3))
cdef int y_max = max(y1, max(y2, y3)) cdef int y_max = max(y1, max(y2, y3))
cdef int vs1_x = x2 - x1 cdef np.ndarray L = np.zeros([3, 1], dtype=DTYPE_float32)
cdef int vs1_y = y2 - y1 cdef np.ndarray matrix = np.full([3, 3], fill_value=1, dtype=DTYPE_int)
cdef int vs2_x = x3 - x1
cdef int vs2_y = y3 - y1
cdef float s cdef np.ndarray src_loc = np.zeros([3, 1], dtype=DTYPE_float64)
cdef float t cdef np.ndarray dst_loc = np.zeros([3, 1], dtype=DTYPE_float64)
for y in xrange(y_min, y_max): cdef int w = x_max - x_min
for x in xrange(x_min, x_max): cdef int h = y_max - y_min
q_x = x - x1 cdef int new_offset
q_y = y - y1
cdef np.ndarray src_reshaped = src[offset:offset + (w * h * 3)].reshape((h, w, 3))
#print src_reshaped
#print '(', w, '*', h, '*', 3, ') * ', ' = ', offset
for j, y in enumerate(xrange(y_min, y_max)):
for i, x in enumerate(xrange(x_min, x_max)):
dst_loc = cartesian2barycentric(
x1, y1, x2, y2, x3, y3, x, y
)
s = dst_loc[0]
t = dst_loc[1]
# notice we have a soft margin of -0.00001, which makes sure there are no
# gaps due to rounding issues
if s >= -0.000000001 and t >= -0.000000001 and s + t <= 1.0:
dst[y, x, :] = src_reshaped[j, i, :]
new_offset = (w * h * 3)
return new_offset
@cython.boundscheck(False)
@cython.wraparound(False)
def get_row_colors_triangle(np.ndarray[unsigned char, ndim=3] src,
int src_x1, int src_y1, int src_x2, int src_y2,
int src_x3, int src_y3,
int dst_x1, int dst_y1, int dst_x2, int dst_y2,
int dst_x3, int dst_y3):
"""
Fill a triangle by applying the Barycentric Algorithm for deciding if a
point lies inside or outside a triangle.
"""
cdef int x_min = min(dst_x1, min(dst_x2, dst_x3))
cdef int x_max = max(dst_x1, max(dst_x2, dst_x3))
cdef int y_min = min(dst_y1, min(dst_y2, dst_y3))
cdef int y_max = max(dst_y1, max(dst_y2, dst_y3))
s = cross_product(q_x, q_y, vs2_x, vs2_y) / \ cdef np.ndarray L = np.zeros([3, 1], dtype=DTYPE_float32)
cross_product(vs1_x, vs1_y, vs2_x, vs2_y) cdef np.ndarray matrix = np.full([3, 3], fill_value=1, dtype=DTYPE_int)
t = cross_product(vs1_x, vs1_y, q_x, q_y) / \
cross_product(vs1_x, vs1_y, vs2_x, vs2_y)
if s >= 0 and t >= 0 and s + t <= 1: cdef np.ndarray src_loc = np.zeros([3, 1], dtype=DTYPE_float64)
dst[y, x, :] = src[y, x, :] cdef np.ndarray dst_loc = np.zeros([3, 1], dtype=DTYPE_float64)
cdef np.ndarray dst = np.full(
[y_max - y_min, x_max - x_min, 3], fill_value=255, dtype=DTYPE_float64
)
for j, y in enumerate(xrange(y_min, y_max)):
for i, x in enumerate(xrange(x_min, x_max)):
dst_loc = cartesian2barycentric(
dst_x1, dst_y1, dst_x2, dst_y2, dst_x3, dst_y3, x, y
)
s = dst_loc[0]
t = dst_loc[1]
# notice we have a soft margin of -0.00001, which makes sure there are no
# gaps due to rounding issues
if s >= -0.000001 and t >= -0.000001 and s + t <= 1.0:
L[0] = s
L[1] = t
L[2] = 1 - s - t
src_loc = barycentric2cartesian(
src_x1, src_x2, src_x3,
src_y1, src_y2, src_y3,
matrix,
L
)
dst[j, i, :] = src[src_loc[1][0], src_loc[0][0], :]
return dst
@cython.boundscheck(False) @cython.boundscheck(False)
...@@ -83,6 +165,11 @@ def get_colors_triangle(np.ndarray[unsigned char, ndim=3] src, ...@@ -83,6 +165,11 @@ def get_colors_triangle(np.ndarray[unsigned char, ndim=3] src,
Fill a triangle by applying the Barycentric Algorithm for deciding if a Fill a triangle by applying the Barycentric Algorithm for deciding if a
point lies inside or outside a triangle. point lies inside or outside a triangle.
""" """
cdef int x_min = min(dst_x1, min(dst_x2, dst_x3))
cdef int x_max = max(dst_x1, max(dst_x2, dst_x3))
cdef int y_min = min(dst_y1, min(dst_y2, dst_y3))
cdef int y_max = max(dst_y1, max(dst_y2, dst_y3))
cdef float s cdef float s
cdef float t cdef float t
...@@ -92,12 +179,18 @@ def get_colors_triangle(np.ndarray[unsigned char, ndim=3] src, ...@@ -92,12 +179,18 @@ def get_colors_triangle(np.ndarray[unsigned char, ndim=3] src,
cdef np.ndarray src_loc = np.zeros([3, 1], dtype=DTYPE_float64) cdef np.ndarray src_loc = np.zeros([3, 1], dtype=DTYPE_float64)
cdef np.ndarray dst_loc = np.zeros([3, 1], dtype=DTYPE_float64) cdef np.ndarray dst_loc = np.zeros([3, 1], dtype=DTYPE_float64)
cdef np.ndarray bary_centric_range = np.linspace(0, 1, num=80) for y in xrange(y_min, y_max):
for x in xrange(x_min, x_max):
dst_loc = cartesian2barycentric(
dst_x1, dst_y1, dst_x2, dst_y2, dst_x3, dst_y3, x, y
)
s = dst_loc[0]
t = dst_loc[1]
# get a float value for every pixel # notice we have a soft margin of -0.00001, which makes sure there are no
for s in bary_centric_range: # gaps due to rounding issues
for t in bary_centric_range: if s >= -0.000001 and t >= -0.000001 and s + t <= 1.0:
if s + t <= 1:
L[0] = s L[0] = s
L[1] = t L[1] = t
L[2] = 1 - s - t L[2] = 1 - s - t
...@@ -109,11 +202,4 @@ def get_colors_triangle(np.ndarray[unsigned char, ndim=3] src, ...@@ -109,11 +202,4 @@ def get_colors_triangle(np.ndarray[unsigned char, ndim=3] src,
L L
) )
dst_loc = barycentric2cartesian( dst[y, x, :] = src[src_loc[1][0], src_loc[0][0], :]
dst_x1, dst_x2, dst_x3,
dst_y1, dst_y2, dst_y3,
matrix,
L
)
dst[dst_loc[1][0], dst_loc[0][0], :] = src[src_loc[1][0], src_loc[0][0], :]
...@@ -67,20 +67,20 @@ def draw_shape(image, points, triangles, multiply=True): ...@@ -67,20 +67,20 @@ def draw_shape(image, points, triangles, multiply=True):
cv2.circle(image, tuple(p), 3, color=(0, 255, 100)) cv2.circle(image, tuple(p), 3, color=(0, 255, 100))
def draw_texture(src, dest, points2d_src, points2d_dest, texture, def draw_texture(src, dest, Vt, points2d_src, points2d_dst, texture, triangles):
triangles, multiply=True, n_samples=20): # texture = np.asarray(texture, dtype=np.uint8).reshape((-1, 3))
texture = np.asarray(texture, dtype=np.uint8).reshape((-1, 3)) texture = np.asarray(texture, np.uint8)
offset = 0
for t, tri in enumerate(triangles): for t, tri in enumerate(triangles):
src_p1, src_p2, src_p3 = points2d_src[tri] src_p1, src_p2, src_p3 = points2d_src[tri]
dest_p1, dest_p2, dest_p3 = points2d_dest[tri] dst_p1, dst_p2, dst_p3 = points2d_dst[tri]
get_colors_triangle( offset += fill_triangle(
src, dest, texture, dest,
src_p1[0], src_p1[1], dst_p1[0], dst_p1[1],
src_p2[0], src_p2[1], dst_p2[0], dst_p2[1],
src_p3[0], src_p3[1], dst_p3[0], dst_p3[1],
dest_p1[0], dest_p1[1], offset,
dest_p2[0], dest_p2[1], t
dest_p3[0], dest_p3[1]
) )
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment