Commit 822faa52 authored by Patrik Huber's avatar Patrik Huber

Added transparent Python/C++ conversion for glm vector and matrix types

Based on pybind11/eigen.h, fairly simple.
A bit of care had to be taken for matrices because glm stores the data in col-major layout in memory.
It makes an unnecessary copy of the data in glm::make_mat*, but these types are small anyway.
parent 203caf7e
/*
utils/pybind11_glm.hpp: Transparent conversion for glm types to NumPy arrays.
This header is based on pybind11/eigen.h.
Copyright (c) 2016 Patrik Huber
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in pybind11's LICENSE file.
*/
#pragma once
#include <cstddef>
#include "pybind11/numpy.h"
#if defined(__INTEL_COMPILER)
# pragma warning(disable: 1682) // implicit conversion of a 64-bit integral type to a smaller integral type (potential portability problem)
#elif defined(__GNUG__) || defined(__clang__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wconversion"
# pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#endif
#include "glm/mat2x2.hpp"
#include "glm/gtc/type_ptr.hpp"
#if defined(__GNUG__) || defined(__clang__)
# pragma GCC diagnostic pop
#endif
#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable: 4127) // warning C4127: Conditional expression is constant
#endif
NAMESPACE_BEGIN(pybind11)
NAMESPACE_BEGIN(detail)
/**
* @file utils/pybind11_glm.hpp
* @brief Transparent conversion to and from Python for glm vector and matrix types.
*
* All converters for matrices assume col-major storage of glm, the default.
* Things will likely break if non-default storage order is used.
*/
template<typename T, glm::precision P>
struct type_caster<glm::tvec2<T, P>>
{
using vector_type = glm::tvec2<T, P>;
typedef typename T Scalar;
static constexpr std::size_t num_elements = 2;
bool load(handle src, bool)
{
array_t<Scalar> buf(src, true);
if (!buf.check())
return false;
if (buf.ndim() == 1) // a 1-dimensional vector
{
if (buf.shape(0) != num_elements) {
return false; // not a 2-elements vector
}
if (buf.strides(0) != sizeof(Scalar))
{
std::cout << "An array with non-standard strides is given. Please pass a contiguous array." << std::endl;
return false;
}
value = glm::make_vec2(buf.mutable_data()); // make_vec* copies the data (unnecessarily)
}
else { // buf.ndim() != 1
return false;
}
return true;
}
static handle cast(const vector_type& src, return_value_policy /* policy */, handle /* parent */)
{
return array(
num_elements, // shape
glm::value_ptr(src) // data
).release();
}
// Specifies the doc-string for the type in Python:
PYBIND11_TYPE_CASTER(vector_type, _("numpy.ndarray[") + npy_format_descriptor<Scalar>::name() +
_("[") + elements() + _("]]"));
protected:
template <typename T = vector_type>
static PYBIND11_DESCR elements() { return _(std::to_string(num_elements).c_str()); }
};
template<typename T, glm::precision P>
struct type_caster<glm::tvec3<T, P>>
{
using vector_type = glm::tvec3<T, P>;
typedef typename T Scalar;
static constexpr std::size_t num_elements = 3;
bool load(handle src, bool)
{
array_t<Scalar> buf(src, true);
if (!buf.check())
return false;
if (buf.ndim() == 1) // a 1-dimensional vector
{
if (buf.shape(0) != num_elements) {
return false; // not a 3-elements vector
}
if (buf.strides(0) != sizeof(Scalar))
{
std::cout << "An array with non-standard strides is given. Please pass a contiguous array." << std::endl;
return false;
}
value = glm::make_vec3(buf.mutable_data()); // make_vec* copies the data (unnecessarily)
}
else { // buf.ndim() != 1
return false;
}
return true;
}
static handle cast(const vector_type& src, return_value_policy /* policy */, handle /* parent */)
{
return array(
num_elements, // shape
glm::value_ptr(src) // data
).release();
}
// Specifies the doc-string for the type in Python:
PYBIND11_TYPE_CASTER(vector_type, _("numpy.ndarray[") + npy_format_descriptor<Scalar>::name() +
_("[") + elements() + _("]]"));
protected:
template <typename T = vector_type>
static PYBIND11_DESCR elements() { return _(std::to_string(num_elements).c_str()); }
};
template<typename T, glm::precision P>
struct type_caster<glm::tvec4<T, P>>
{
using vector_type = glm::tvec4<T, P>;
typedef typename T Scalar;
static constexpr std::size_t num_elements = 4;
bool load(handle src, bool)
{
array_t<Scalar> buf(src, true);
if (!buf.check())
return false;
if (buf.ndim() == 1) // a 1-dimensional vector
{
if (buf.shape(0) != num_elements) {
return false; // not a 4-elements vector
}
if (buf.strides(0) != sizeof(Scalar))
{
std::cout << "An array with non-standard strides is given. Please pass a contiguous array." << std::endl;
return false;
}
value = glm::make_vec4(buf.mutable_data()); // make_vec* copies the data (unnecessarily)
}
else { // buf.ndim() != 1
return false;
}
return true;
}
static handle cast(const vector_type& src, return_value_policy /* policy */, handle /* parent */)
{
return array(
num_elements, // shape
glm::value_ptr(src) // data
).release();
}
// Specifies the doc-string for the type in Python:
PYBIND11_TYPE_CASTER(vector_type, _("numpy.ndarray[") + npy_format_descriptor<Scalar>::name() +
_("[") + elements() + _("]]"));
protected:
template <typename T = vector_type>
static PYBIND11_DESCR elements() { return _(std::to_string(num_elements).c_str()); }
};
template<typename T, glm::precision P>
struct type_caster<glm::tmat4x4<T, P>>
{
using matrix_type = glm::tmat4x4<T, P>;
typedef typename T Scalar;
static constexpr std::size_t num_rows = 4;
static constexpr std::size_t num_cols = 4;
bool load(handle src, bool)
{
array_t<Scalar> buf(src, true);
if (!buf.check())
return false;
if (buf.ndim() == 2) // a 2-dimensional matrix
{
if (buf.shape(0) != num_rows || buf.shape(1) != num_cols) {
return false; // not a 4x4 matrix
}
if (buf.strides(0) / sizeof(Scalar) != num_cols || buf.strides(1) != sizeof(Scalar))
{
std::cout << "An array with non-standard strides is given. Please pass a contiguous array." << std::endl;
return false;
}
// What we get from Python is laid out in row-major memory order, while GLM's
// storage is col-major, thus, we transpose.
value = glm::transpose(glm::make_mat4x4(buf.mutable_data())); // make_mat*() copies the data (unnecessarily)
}
else { // buf.ndim() != 2
return false;
}
return true;
}
static handle cast(const matrix_type& src, return_value_policy /* policy */, handle /* parent */)
{
return array(
{ num_rows, num_cols }, // shape
{ sizeof(Scalar), sizeof(Scalar) * num_rows }, // strides - flip the row/col layout!
glm::value_ptr(src) // data
).release();
}
// Specifies the doc-string for the type in Python:
PYBIND11_TYPE_CASTER(matrix_type, _("numpy.ndarray[") + npy_format_descriptor<Scalar>::name() +
_("[") + rows() + _(", ") + cols() + _("]]"));
protected:
template <typename T = matrix_type>
static PYBIND11_DESCR rows() { return _(std::to_string(num_rows).c_str()); }
template <typename T = matrix_type>
static PYBIND11_DESCR cols() { return _(std::to_string(num_cols).c_str()); }
};
NAMESPACE_END(detail)
NAMESPACE_END(pybind11)
#if defined(_MSC_VER)
#pragma warning(pop)
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment