Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
E
eos
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Richard Torenvliet
eos
Commits
299683e4
Commit
299683e4
authored
8 years ago
by
Patrik Huber
Browse files
Options
Downloads
Patches
Plain Diff
Added transparent Python conversion for cv::Mat
Also updated documentation
parent
1c48b1fc
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
python/pybind11_opencv.hpp
+157
-2
157 additions, 2 deletions
python/pybind11_opencv.hpp
with
157 additions
and
2 deletions
python/pybind11_opencv.hpp
+
157
−
2
View file @
299683e4
...
...
@@ -12,6 +12,7 @@
#include
"pybind11/numpy.h"
#include
"opencv2/core/core.hpp"
#include
"opencv2/core/types_c.h"
#include
<iostream>
...
...
@@ -20,9 +21,17 @@ NAMESPACE_BEGIN(detail)
/**
* @file python/pybind11_opencv.hpp
* @brief Transparent conversion to and from Python for OpenCV vectors.
* @brief Transparent conversion to and from Python for OpenCV vector and matrix types.
*
* OpenCV and numpy both use row-major storage order by default, so the conversion works
* pretty much out of the box, even for multi-channel matrices.
* Handling of non-standard strides is not implemented.
* Handling of column-major numpy arrays is unsupported.
*/
/**
* @brief Transparent conversion for OpenCV's cv::Vec types to and from Python.
*/
template
<
typename
T
,
int
N
>
struct
type_caster
<
cv
::
Vec
<
T
,
N
>>
{
...
...
@@ -32,7 +41,7 @@ struct type_caster<cv::Vec<T, N>>
bool
load
(
handle
src
,
bool
)
{
array_t
<
Scalar
>
buf
(
src
,
true
);
auto
buf
=
array_t
<
Scalar
>
::
ensure
(
src
);
if
(
!
buf
)
return
false
;
...
...
@@ -67,5 +76,151 @@ struct type_caster<cv::Vec<T, N>>
_
(
"["
)
+
_
<
num_elements
>
()
+
_
(
"]]"
));
};
/**
* @brief Helper function to convert a Python array to a cv::Mat.
*
* This is an internal helper function that converts a pybind11::array to a cv::Mat.
* - The \p opencv_depth given must match the type of the data in \p buf.
* - \p buf must be a 1, 2 or 3-dimensional array.
* - The function expects a valid \p buf object.
*
* The buffer's mutable_data() is used directly, and I think no data is copied.
*
* @param buf Python buffer object.
* @param opencv_depth OpenCV "depth" (the data type, e.g. CV_8U).
* @return A cv::Mat pointing to the buffer's data or an empty Mat if an error occured.
*/
cv
::
Mat
pyarray_to_mat
(
pybind11
::
array
buf
,
int
opencv_depth
)
{
cv
::
Mat
value
;
if
(
buf
.
ndim
()
==
1
)
{
// A numpy array, with only one dimension. A row-vector.
auto
num_elements
=
buf
.
shape
(
0
);
auto
opencv_type
=
CV_MAKETYPE
(
opencv_depth
,
1
);
value
=
cv
::
Mat
(
1
,
num_elements
,
opencv_type
,
buf
.
mutable_data
());
}
else
if
(
buf
.
ndim
()
==
2
)
{
// We got a matrix (but it can also be 1 x n or n x 1)
auto
opencv_type
=
CV_MAKETYPE
(
opencv_depth
,
1
);
value
=
cv
::
Mat
(
buf
.
shape
(
0
),
buf
.
shape
(
1
),
opencv_type
,
buf
.
mutable_data
());
}
else
if
(
buf
.
ndim
()
==
3
)
{
// We got something with 3 dimensions, i.e. an image with 2, 3 or 4 channels (or 'k' for that matter)
auto
num_chans
=
buf
.
shape
(
2
);
// Check whether 3 or 4 and abort otherwise??
auto
opencv_type
=
CV_MAKETYPE
(
opencv_depth
,
num_chans
);
value
=
cv
::
Mat
(
buf
.
shape
(
0
),
buf
.
shape
(
1
),
opencv_type
,
buf
.
mutable_data
());
}
else
{
// buf.ndim() is not 1, 2 or 3.
return
cv
::
Mat
();
}
return
value
;
};
/**
* @brief Transparent conversion for OpenCV's cv::Mat type to and from Python.
*
* Converts cv::Mat's to and from Python. Can construct a cv::Mat from numpy arrays,
* as well as potentially other Python array types.
*
* - Supports only contiguous matrices
* - The numpy array has to be in default (row-major) storage order
* - Non-default strides are not implemented.
*
* Note about strides: http://docs.opencv.org/2.4/modules/core/doc/basic_structures.html#mat-step1
* And possibly use src.elemSize or src.elemSize1.
*/
template
<
>
struct
type_caster
<
cv
::
Mat
>
{
bool
load
(
handle
src
,
bool
)
{
// Since cv::Mat has its time dynamically specified at run-time, we can't bind functions
// that take a cv::Mat to any particular Scalar type.
// Thus the data we get from python can be any type.
auto
buf
=
pybind11
::
array
::
ensure
(
src
);
if
(
!
buf
)
return
false
;
auto
pyarray_dtype
=
buf
.
dtype
();
// Todo: We should probably check that buf.strides(i) is "default", by dividing it by the Scalar type or something.
int
opencv_depth
;
if
(
pyarray_dtype
==
pybind11
::
dtype
::
of
<
std
::
uint8_t
>
())
{
opencv_depth
=
CV_8U
;
}
else
if
(
pyarray_dtype
==
pybind11
::
dtype
::
of
<
float
>
())
{
opencv_depth
=
CV_32F
;
}
else
if
(
pyarray_dtype
==
pybind11
::
dtype
::
of
<
double
>
())
{
opencv_depth
=
CV_64F
;
}
else
{
return
false
;
}
// Todo: Would be nice to add int32, as it's the default in python if you create a
// list with [1, 2, 3]. But it doesn't evaluate to true when comparing with
// all integer dtypes (int, int32, uint32, etc.).
value
=
pyarray_to_mat
(
buf
,
opencv_depth
);
if
(
value
.
empty
())
{
return
false
;
}
return
true
;
};
static
handle
cast
(
const
cv
::
Mat
&
src
,
return_value_policy
/* policy */
,
handle
/* parent */
)
{
if
(
!
src
.
isContinuous
())
{
throw
std
::
runtime_error
(
"Cannot cast non-contiguous cv::Mat objects to Python. Change the C++ code to return a contiguous cv::Mat."
);
// We could probably support that with implementing strides properly.
}
const
auto
opencv_depth
=
src
.
depth
();
const
auto
num_chans
=
src
.
channels
();
std
::
vector
<
std
::
size_t
>
shape
;
if
(
num_chans
==
1
)
{
shape
=
{
(
size_t
)
src
.
rows
,
(
size_t
)
src
.
cols
};
// if either of them is == 1, we could specify only 1 value for shape - but be careful with strides,
// if there's a col-vector, I don't think we can do it without using strides.
// Also, check what happens in python when we pass a col & row vec respectively.
}
else
if
(
num_chans
==
2
||
num_chans
==
3
||
num_chans
==
4
)
{
shape
=
{
(
size_t
)
src
.
rows
,
(
size_t
)
src
.
cols
,
(
size_t
)
num_chans
};
}
else
{
throw
std
::
runtime_error
(
"Cannot return matrices with more than 4 channels back to Python."
);
// We could probably implement this quite easily but >4 channel images/matrices don't occur often.
}
// Now return the data, depending on its type:
if
(
opencv_depth
==
CV_8U
)
{
return
array
(
pybind11
::
dtype
::
of
<
std
::
uint8_t
>
(),
shape
,
src
.
data
).
release
();
}
else
if
(
opencv_depth
==
CV_32F
)
{
return
array
(
pybind11
::
dtype
::
of
<
float
>
(),
shape
,
src
.
data
).
release
();
}
else
if
(
opencv_depth
==
CV_64F
)
{
return
array
(
pybind11
::
dtype
::
of
<
double
>
(),
shape
,
src
.
data
).
release
();
}
else
{
throw
std
::
runtime_error
(
"Can currently only return matrices of type 8U, 32F and 64F back to Python. Other types can be added if needed."
);
}
};
PYBIND11_TYPE_CASTER
(
cv
::
Mat
,
_
(
"numpy.ndarray[uint8|float32|float64[m, n, d]] (d<=4)"
));
};
NAMESPACE_END
(
detail
)
NAMESPACE_END
(
pybind11
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment