Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
E
eos
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Richard Torenvliet
eos
Commits
299683e4
Commit
299683e4
authored
Dec 18, 2016
by
Patrik Huber
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added transparent Python conversion for cv::Mat
Also updated documentation
parent
1c48b1fc
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
157 additions
and
2 deletions
+157
-2
python/pybind11_opencv.hpp
python/pybind11_opencv.hpp
+157
-2
No files found.
python/pybind11_opencv.hpp
View file @
299683e4
...
...
@@ -12,6 +12,7 @@
#include "pybind11/numpy.h"
#include "opencv2/core/core.hpp"
#include "opencv2/core/types_c.h"
#include <iostream>
...
...
@@ -20,9 +21,17 @@ NAMESPACE_BEGIN(detail)
/**
* @file python/pybind11_opencv.hpp
* @brief Transparent conversion to and from Python for OpenCV vectors.
* @brief Transparent conversion to and from Python for OpenCV vector and matrix types.
*
* OpenCV and numpy both use row-major storage order by default, so the conversion works
* pretty much out of the box, even for multi-channel matrices.
* Handling of non-standard strides is not implemented.
* Handling of column-major numpy arrays is unsupported.
*/
/**
* @brief Transparent conversion for OpenCV's cv::Vec types to and from Python.
*/
template
<
typename
T
,
int
N
>
struct
type_caster
<
cv
::
Vec
<
T
,
N
>>
{
...
...
@@ -32,7 +41,7 @@ struct type_caster<cv::Vec<T, N>>
bool
load
(
handle
src
,
bool
)
{
a
rray_t
<
Scalar
>
buf
(
src
,
true
);
a
uto
buf
=
array_t
<
Scalar
>::
ensure
(
src
);
if
(
!
buf
)
return
false
;
...
...
@@ -67,5 +76,151 @@ struct type_caster<cv::Vec<T, N>>
_
(
"["
)
+
_
<
num_elements
>
()
+
_
(
"]]"
));
};
/**
* @brief Helper function to convert a Python array to a cv::Mat.
*
* This is an internal helper function that converts a pybind11::array to a cv::Mat.
* - The \p opencv_depth given must match the type of the data in \p buf.
* - \p buf must be a 1, 2 or 3-dimensional array.
* - The function expects a valid \p buf object.
*
* The buffer's mutable_data() is used directly, and I think no data is copied.
*
* @param buf Python buffer object.
* @param opencv_depth OpenCV "depth" (the data type, e.g. CV_8U).
* @return A cv::Mat pointing to the buffer's data or an empty Mat if an error occured.
*/
cv
::
Mat
pyarray_to_mat
(
pybind11
::
array
buf
,
int
opencv_depth
)
{
cv
::
Mat
value
;
if
(
buf
.
ndim
()
==
1
)
{
// A numpy array, with only one dimension. A row-vector.
auto
num_elements
=
buf
.
shape
(
0
);
auto
opencv_type
=
CV_MAKETYPE
(
opencv_depth
,
1
);
value
=
cv
::
Mat
(
1
,
num_elements
,
opencv_type
,
buf
.
mutable_data
());
}
else
if
(
buf
.
ndim
()
==
2
)
{
// We got a matrix (but it can also be 1 x n or n x 1)
auto
opencv_type
=
CV_MAKETYPE
(
opencv_depth
,
1
);
value
=
cv
::
Mat
(
buf
.
shape
(
0
),
buf
.
shape
(
1
),
opencv_type
,
buf
.
mutable_data
());
}
else
if
(
buf
.
ndim
()
==
3
)
{
// We got something with 3 dimensions, i.e. an image with 2, 3 or 4 channels (or 'k' for that matter)
auto
num_chans
=
buf
.
shape
(
2
);
// Check whether 3 or 4 and abort otherwise??
auto
opencv_type
=
CV_MAKETYPE
(
opencv_depth
,
num_chans
);
value
=
cv
::
Mat
(
buf
.
shape
(
0
),
buf
.
shape
(
1
),
opencv_type
,
buf
.
mutable_data
());
}
else
{
// buf.ndim() is not 1, 2 or 3.
return
cv
::
Mat
();
}
return
value
;
};
/**
* @brief Transparent conversion for OpenCV's cv::Mat type to and from Python.
*
* Converts cv::Mat's to and from Python. Can construct a cv::Mat from numpy arrays,
* as well as potentially other Python array types.
*
* - Supports only contiguous matrices
* - The numpy array has to be in default (row-major) storage order
* - Non-default strides are not implemented.
*
* Note about strides: http://docs.opencv.org/2.4/modules/core/doc/basic_structures.html#mat-step1
* And possibly use src.elemSize or src.elemSize1.
*/
template
<
>
struct
type_caster
<
cv
::
Mat
>
{
bool
load
(
handle
src
,
bool
)
{
// Since cv::Mat has its time dynamically specified at run-time, we can't bind functions
// that take a cv::Mat to any particular Scalar type.
// Thus the data we get from python can be any type.
auto
buf
=
pybind11
::
array
::
ensure
(
src
);
if
(
!
buf
)
return
false
;
auto
pyarray_dtype
=
buf
.
dtype
();
// Todo: We should probably check that buf.strides(i) is "default", by dividing it by the Scalar type or something.
int
opencv_depth
;
if
(
pyarray_dtype
==
pybind11
::
dtype
::
of
<
std
::
uint8_t
>
())
{
opencv_depth
=
CV_8U
;
}
else
if
(
pyarray_dtype
==
pybind11
::
dtype
::
of
<
float
>
())
{
opencv_depth
=
CV_32F
;
}
else
if
(
pyarray_dtype
==
pybind11
::
dtype
::
of
<
double
>
())
{
opencv_depth
=
CV_64F
;
}
else
{
return
false
;
}
// Todo: Would be nice to add int32, as it's the default in python if you create a
// list with [1, 2, 3]. But it doesn't evaluate to true when comparing with
// all integer dtypes (int, int32, uint32, etc.).
value
=
pyarray_to_mat
(
buf
,
opencv_depth
);
if
(
value
.
empty
())
{
return
false
;
}
return
true
;
};
static
handle
cast
(
const
cv
::
Mat
&
src
,
return_value_policy
/* policy */
,
handle
/* parent */
)
{
if
(
!
src
.
isContinuous
())
{
throw
std
::
runtime_error
(
"Cannot cast non-contiguous cv::Mat objects to Python. Change the C++ code to return a contiguous cv::Mat."
);
// We could probably support that with implementing strides properly.
}
const
auto
opencv_depth
=
src
.
depth
();
const
auto
num_chans
=
src
.
channels
();
std
::
vector
<
std
::
size_t
>
shape
;
if
(
num_chans
==
1
)
{
shape
=
{
(
size_t
)
src
.
rows
,
(
size_t
)
src
.
cols
};
// if either of them is == 1, we could specify only 1 value for shape - but be careful with strides,
// if there's a col-vector, I don't think we can do it without using strides.
// Also, check what happens in python when we pass a col & row vec respectively.
}
else
if
(
num_chans
==
2
||
num_chans
==
3
||
num_chans
==
4
)
{
shape
=
{
(
size_t
)
src
.
rows
,
(
size_t
)
src
.
cols
,
(
size_t
)
num_chans
};
}
else
{
throw
std
::
runtime_error
(
"Cannot return matrices with more than 4 channels back to Python."
);
// We could probably implement this quite easily but >4 channel images/matrices don't occur often.
}
// Now return the data, depending on its type:
if
(
opencv_depth
==
CV_8U
)
{
return
array
(
pybind11
::
dtype
::
of
<
std
::
uint8_t
>
(),
shape
,
src
.
data
).
release
();
}
else
if
(
opencv_depth
==
CV_32F
)
{
return
array
(
pybind11
::
dtype
::
of
<
float
>
(),
shape
,
src
.
data
).
release
();
}
else
if
(
opencv_depth
==
CV_64F
)
{
return
array
(
pybind11
::
dtype
::
of
<
double
>
(),
shape
,
src
.
data
).
release
();
}
else
{
throw
std
::
runtime_error
(
"Can currently only return matrices of type 8U, 32F and 64F back to Python. Other types can be added if needed."
);
}
};
PYBIND11_TYPE_CASTER
(
cv
::
Mat
,
_
(
"numpy.ndarray[uint8|float32|float64[m, n, d]] (d<=4)"
));
};
NAMESPACE_END
(
detail
)
NAMESPACE_END
(
pybind11
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment