Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
U
uva
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Taddeüs Kroes
uva
Commits
e19fada3
Commit
e19fada3
authored
Oct 07, 2011
by
Taddeüs Kroes
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
ImProc ass3: Found Waldo.
parent
aa0dbb3f
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
37 additions
and
51 deletions
+37
-51
improc/ass3/back_projection.py
improc/ass3/back_projection.py
+34
-47
improc/ass3/intersect.py
improc/ass3/intersect.py
+3
-4
No files found.
improc/ass3/back_projection.py
View file @
e19fada3
#!/usr/bin/env python
#!/usr/bin/env python
from
numpy
import
zeros
from
numpy
import
zeros
from
matplotlib.pyplot
import
imread
,
imshow
,
show
from
matplotlib.pyplot
import
subplot
,
imread
,
imshow
,
show
,
plot
from
intersect
import
col2bin
,
domainIterator
,
colHist
,
histogramIntersect
from
intersect
import
col2bin
,
domainIterator
,
colHist
,
histogramIntersect
from
scipy.ndimage
import
correlate
def
convolution
(
image
,
radius
):
def
convolution
(
image
,
radius
):
"""Calculate the convolution of an image with a specified circle radius."""
"""Calculate the convolution of an image with a specified circle radius."""
c
=
zeros
(
image
.
shape
)
r_sq
=
radius
**
2
w
,
h
=
image
.
shape
[:
2
]
# Loop to the square that surrounds the circle, and check if the pixel
# Loop to the square that surrounds the circle, and check if the pixel
# is inside the disk
# is inside the circle
for
x
,
y
in
domainIterator
(
image
):
r_sq
=
radius
**
2
circle_sum
=
0.
mask
=
zeros
((
2
*
radius
+
1
,
2
*
radius
+
1
),
dtype
=
int
)
pixels
=
0
for
dx
in
xrange
(
-
radius
,
radius
+
1
):
for
dy
in
xrange
(
-
radius
,
radius
+
1
):
cx
=
x
+
dx
cy
=
y
+
dy
if
cx
>=
0
and
cy
>=
0
and
cx
<
w
and
cy
<
h
\
and
dx
**
2
+
dy
**
2
<
r_sq
:
circle_sum
+=
image
[
cx
,
cy
]
pixels
+=
1
if
pixels
:
for
x
,
y
in
domainIterator
(
mask
):
c
[
x
,
y
]
=
circle_sum
/
pixels
if
(
x
-
radius
)
**
2
+
(
y
-
radius
)
**
2
<
r_sq
:
mask
[
x
,
y
]
=
1
return
c
return
c
orrelate
(
image
,
mask
,
mode
=
'nearest'
)
def
hbp
(
image
,
environment
,
bins
,
model
,
radius
):
def
hbp
(
image
,
environment
,
bins
,
model
,
radius
):
"""Create the histogram back projection of two images."""
"""Create the histogram back projection of two images."""
...
@@ -41,59 +28,59 @@ def hbp(image, environment, bins, model, radius):
...
@@ -41,59 +28,59 @@ def hbp(image, environment, bins, model, radius):
R
=
zeros
(
bins
)
R
=
zeros
(
bins
)
for
c
in
domainIterator
(
R
,
3
):
for
c
in
domainIterator
(
R
,
3
):
if
(
I
[
c
]
!=
0
).
all
()
:
if
I
[
c
]
!=
0
:
R
[
c
]
=
M
[
c
]
/
I
[
c
]
R
[
c
]
=
float
(
M
[
c
])
/
float
(
I
[
c
])
# Create back projection
# Create back projection
print
'Creating back projection...'
print
'Creating back projection...'
b
=
zeros
(
environment
.
shape
[:
2
])
b
=
zeros
(
environment
.
shape
[:
2
])
use
=
environment
.
astype
(
float
)
*
bins
use
=
environment
.
astype
(
float
)
*
map
(
lambda
x
:
x
-
1
,
bins
)
if
model
==
'rgb'
:
if
model
==
'rgb'
:
use
/=
255
use
/=
255
elif
model
==
'hsv'
:
elif
model
==
'hsv'
:
# TODO: implement HSV color model
for
p
in
domainIterator
(
image
):
pass
use
[
p
]
=
rgb_to_hsv
(
*
use
[
p
].
tolist
())
for
p
in
domainIterator
(
b
):
for
p
in
domainIterator
(
b
):
b
[
p
]
=
min
(
R
[
col2bin
(
use
[
p
])],
1
)
b
[
p
]
=
min
(
R
[
col2bin
(
use
[
p
])],
1
.
)
# Create convolution to create a peak value
# Create convolution to create a peak value
print
'Creating convolution...'
print
'Creating convolution...'
return
b
return
convolution
(
b
,
radius
)
#return convolution(b, radius)
def
loc
(
image
,
color
):
def
loc
(
image
,
color
):
pass
for
p
in
domainIterator
(
image
):
if
(
image
[
p
]
==
color
).
all
():
return
p
return
(
0
,
0
)
def
find_image
(
image
,
environment
,
bins
,
model
,
radius
):
def
find_image
(
image
,
environment
,
bins
,
model
,
radius
):
"""Find the location of the peak value of a back projection histogram."""
"""Find the location of the peak value of a back projection histogram."""
b
=
hbp
(
image
,
environment
,
bins
,
model
,
radius
)
b
=
hbp
(
image
,
environment
,
bins
,
model
,
radius
)
return
loc
(
environment
,
b
.
max
())
return
loc
(
b
,
b
.
max
())
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
print
'Reading images...'
print
'Reading images...'
waldo
=
imread
(
'waldo.tiff'
)
waldo
=
imread
(
'waldo.tiff'
)
env
=
imread
(
'waldo_env.tiff'
)
env
=
imread
(
'waldo_env.tiff'
)
b
=
hbp
(
waldo
,
env
,
[
8
]
*
3
,
'rgb'
,
8
)
b
=
hbp
(
waldo
,
env
,
[
64
]
*
3
,
'rgb'
,
10
)
imshow
(
b
,
cmap
=
'gray'
,
origin
=
'lower'
)
subplot
(
121
)
show
()
imshow
(
env
,
origin
=
'lower'
)
import
sys
subplot
(
122
)
sys
.
exit
(
0
)
imshow
(
b
,
origin
=
'lower'
)
print
'Mapping projection over original image...'
result
=
env
.
copy
()
for
p
in
domainIterator
(
result
):
result
[
p
]
*=
b
[
p
]
print
'done'
imshow
(
result
,
origin
=
'lower'
)
#imshow(b * env)
# Draw a rectangle around the found center pixel
# Draw a rectangle around the found center pixel
#x, y = find_image(waldo, env, [
8] * 3, 'rgb'
)
#x, y = find_image(waldo, env, [
64] * 3, 'rgb', 10
)
#w, h = waldo.shape[:2]
#w, h = waldo.shape[:2]
#plot([x - w / 2, x + w / 2], [y - h / 2, y + h / 2], 'r-')
#l = x - w / 2
#imshow(env)
#r = x + w / 2
#b = y - h / 2
#t = y + h / 2
#plot([t, t, b, b], [l, r, r, l], 'r-')
#imshow(env, origin='lower')
show
()
show
()
improc/ass3/intersect.py
View file @
e19fada3
...
@@ -4,8 +4,7 @@ from matplotlib.pyplot import imread
...
@@ -4,8 +4,7 @@ from matplotlib.pyplot import imread
def
col2bin
(
color
):
def
col2bin
(
color
):
"""Get the histogram bin coordinates of a color."""
"""Get the histogram bin coordinates of a color."""
#return tuple(map(lambda x: round(x - 1), color))
return
tuple
(
color
.
astype
(
int
))
return
tuple
(
color
.
astype
(
int
)
-
1
)
def
domainIterator
(
image
,
dim
=
2
):
def
domainIterator
(
image
,
dim
=
2
):
"""Pixel iterator for arrays of with 2 or 3 dimensions."""
"""Pixel iterator for arrays of with 2 or 3 dimensions."""
...
@@ -21,8 +20,8 @@ def domainIterator(image, dim=2):
...
@@ -21,8 +20,8 @@ def domainIterator(image, dim=2):
def
colHist
(
image
,
bins
,
model
):
def
colHist
(
image
,
bins
,
model
):
"""Create the color histogram of an image."""
"""Create the color histogram of an image."""
h
=
zeros
(
bins
)
h
=
zeros
(
bins
,
dtype
=
int
)
use
=
image
.
astype
(
float
)
*
bins
use
=
image
.
astype
(
float
)
*
map
(
lambda
x
:
x
-
1
,
bins
)
if
model
==
'rgb'
:
if
model
==
'rgb'
:
use
/=
255
use
/=
255
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment