Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
U
uva
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Taddeüs Kroes
uva
Commits
df410367
Commit
df410367
authored
Oct 24, 2011
by
Taddeüs Kroes
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
improc ass4: Changed gD() function to use the Gauss separability property.
parent
6be9b13e
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
28 additions
and
31 deletions
+28
-31
improc/ass4/gauss.py
improc/ass4/gauss.py
+28
-31
No files found.
improc/ass4/gauss.py
View file @
df410367
#!/usr/bin/env python
#!/usr/bin/env python
from
numpy
import
zeros
,
arange
,
meshgrid
,
array
,
dot
from
numpy
import
zeros
,
arange
,
meshgrid
,
array
,
matrix
from
math
import
ceil
,
exp
,
pi
,
sqrt
from
math
import
ceil
,
exp
,
pi
,
sqrt
from
matplotlib.pyplot
import
imread
,
imshow
,
plot
,
xlabel
,
ylabel
,
show
,
\
from
matplotlib.pyplot
import
imread
,
imshow
,
plot
,
xlabel
,
ylabel
,
show
,
\
subplot
,
xlim
,
savefig
subplot
,
xlim
,
savefig
...
@@ -52,38 +52,33 @@ def Gauss1(s, order=0):
...
@@ -52,38 +52,33 @@ def Gauss1(s, order=0):
r
=
int
(
ceil
(
3
*
s
))
r
=
int
(
ceil
(
3
*
s
))
size
=
2
*
r
+
1
size
=
2
*
r
+
1
W
=
zeros
(
size
)
W
=
zeros
(
size
)
#t = float(s) ** 2
#a = 1 / (2 * pi * t)
# Sample the Gaussian function
# Sample the Gaussian function
#W = array([a * e ** -((x - size) ** 2 / (2 * t)) for x in xrange(r)])
W
=
array
([
f
(
x
-
r
,
s
)
for
x
in
xrange
(
size
)])
W
=
array
([
f
(
x
-
r
,
s
)
for
x
in
xrange
(
size
)])
# Make sure that the sum of all kernel values is equal to one
if
not
order
:
if
not
order
:
# Make sure that the sum of all kernel values is equal to one
W
/=
W
.
sum
()
W
/=
W
.
sum
()
return
W
return
W
def
plot_mask
(
W
,
ax
):
""""""
x
=
arange
(
W
.
shape
[
0
])
Y
,
X
=
meshgrid
(
x
,
x
)
#stride = s / 4
#ax.plot_surface(X, Y, W, rstride=stride, cstride=stride, cmap='jet')
ax
.
plot_surface
(
X
,
Y
,
W
,
rstride
=
1
,
cstride
=
1
,
linewidth
=
0
,
\
antialiased
=
True
,
cmap
=
'jet'
)
ax
.
set_xlabel
(
'y'
)
ax
.
set_ylabel
(
'x'
)
ax
.
set_zlabel
(
'g(x, y)'
)
def
gD
(
F
,
s
,
iorder
,
jorder
):
def
gD
(
F
,
s
,
iorder
,
jorder
):
"""Create the Gaussian derivative convolution of image F."""
"""Create the Gaussian derivative convolution of image F."""
Fy
=
Gauss1
(
s
,
iorder
)
Fy
=
Gauss1
(
s
,
iorder
)
Fx
=
Fy
if
jorder
==
iorder
else
Gauss1
(
s
,
jorder
)
Fx
=
Fy
if
jorder
==
iorder
else
Gauss1
(
s
,
jorder
)
W
=
dot
(
array
([
Fy
]).
T
,
array
([
Fx
])
)
G
=
convolve1d
(
F
,
Fy
,
axis
=
0
,
mode
=
'nearest'
)
return
convolve
(
F
,
W
,
mode
=
'nearest'
)
return
convolve1d
(
G
,
Fx
,
axis
=
1
,
mode
=
'nearest'
)
def
plot_kernel
(
W
,
ax
):
"""Create a 3D plot of a kernel."""
x
=
arange
(
W
.
shape
[
0
])
Y
,
X
=
meshgrid
(
x
,
x
)
ax
.
plot_surface
(
X
,
Y
,
array
(
W
),
rstride
=
1
,
cstride
=
1
,
linewidth
=
0
,
\
antialiased
=
True
,
cmap
=
'jet'
)
ax
.
set_xlabel
(
'y'
)
ax
.
set_ylabel
(
'x'
)
ax
.
set_zlabel
(
'g(x, y)'
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
if
len
(
argv
)
<
2
:
if
len
(
argv
)
<
2
:
...
@@ -95,18 +90,21 @@ if __name__ == '__main__':
...
@@ -95,18 +90,21 @@ if __name__ == '__main__':
if
len
(
argv
)
<
5
:
if
len
(
argv
)
<
5
:
exit_with_usage
()
exit_with_usage
()
# Calculate the gaussian kernel using derivatives of the specified
# order in both directions
s
=
float
(
argv
[
2
])
s
=
float
(
argv
[
2
])
iorder
=
int
(
argv
[
3
])
iorder
=
int
(
argv
[
3
])
jorder
=
int
(
argv
[
4
])
jorder
=
int
(
argv
[
4
])
Fy
=
Gauss1
(
s
,
iorder
)
Fy
=
matrix
([
Gauss1
(
s
,
iorder
)]
)
Fx
=
Fy
if
jorder
==
iorder
else
Gauss1
(
s
,
jorder
)
Fx
=
Fy
if
jorder
==
iorder
else
matrix
([
Gauss1
(
s
,
jorder
)]
)
W
=
dot
(
array
([
Fy
]).
T
,
array
([
Fx
]))
W
=
Fy
.
T
*
Fx
G
=
gD
(
F
,
s
,
iorder
,
jorder
)
G
=
gD
(
F
,
s
,
iorder
,
jorder
)
# Show the original image, kernel and convoluted image respectively
subplot
(
131
)
subplot
(
131
)
imshow
(
F
,
cmap
=
'gray'
)
imshow
(
F
,
cmap
=
'gray'
)
plot_
mask
(
W
,
subplot
(
132
,
projection
=
'3d'
))
plot_
kernel
(
W
,
subplot
(
132
,
projection
=
'3d'
))
subplot
(
133
)
subplot
(
133
)
imshow
(
G
,
cmap
=
'gray'
)
imshow
(
G
,
cmap
=
'gray'
)
elif
argv
[
1
]
==
'timer'
:
elif
argv
[
1
]
==
'timer'
:
...
@@ -120,14 +118,17 @@ if __name__ == '__main__':
...
@@ -120,14 +118,17 @@ if __name__ == '__main__':
S
=
[
1
,
2
,
3
,
5
,
7
,
9
,
11
,
15
,
19
]
S
=
[
1
,
2
,
3
,
5
,
7
,
9
,
11
,
15
,
19
]
times
=
[]
times
=
[]
for
i
,
s
in
enumerate
(
S
)
:
for
s
in
S
:
t
=
0
t
=
0
# Average a number of timings to eliminate noise
for
k
in
xrange
(
repeat
):
for
k
in
xrange
(
repeat
):
start
=
time
()
start
=
time
()
if
method
==
'1d'
:
if
method
==
'1d'
:
convolve1d
(
F
,
Gauss1
(
s
),
axis
=
0
,
mode
=
'nearest'
)
W
=
Gauss1
(
s
)
G
=
convolve1d
(
F
,
W
,
axis
=
0
,
mode
=
'nearest'
)
convolve1d
(
G
,
W
,
axis
=
1
,
mode
=
'nearest'
)
elif
method
==
'2d'
:
elif
method
==
'2d'
:
convolve
(
F
,
Gauss
(
s
),
mode
=
'nearest'
)
convolve
(
F
,
Gauss
(
s
),
mode
=
'nearest'
)
...
@@ -148,14 +149,10 @@ if __name__ == '__main__':
...
@@ -148,14 +149,10 @@ if __name__ == '__main__':
W
=
Gauss
(
s
)
W
=
Gauss
(
s
)
G
=
convolve
(
F
,
W
,
mode
=
'nearest'
)
G
=
convolve
(
F
,
W
,
mode
=
'nearest'
)
#
Original image
#
Show the original image, kernel and convoluted image respectively
subplot
(
131
)
subplot
(
131
)
imshow
(
F
,
cmap
=
'gray'
)
imshow
(
F
,
cmap
=
'gray'
)
plot_kernel
(
W
,
subplot
(
132
,
projection
=
'3d'
))
# Gauss function (3D plot)
plot_mask
(
W
,
subplot
(
132
,
projection
=
'3d'
))
# Convolution
subplot
(
133
)
subplot
(
133
)
imshow
(
G
,
cmap
=
'gray'
)
imshow
(
G
,
cmap
=
'gray'
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment