Commit 6f95700e authored by Taddeüs Kroes's avatar Taddeüs Kroes

improc ass4: Added report with derivatives of f(x, y).

parent ed89cbc8
\documentclass[10pt,a4paper]{article}
\usepackage[english]{babel}
\usepackage[utf8]{inputenc}
\usepackage{amsmath,hyperref,graphicx,booktabs,float}
% Paragraph indentation
\setlength{\parindent}{0pt}
\setlength{\parskip}{1ex plus 0.5ex minus 0.2ex}
\title{Image processing 4: Local Structure}
\author{Sander van Veen \& Tadde\"us Kroes \\ 6167969 \& 6054129}
\begin{document}
\maketitle
\section{Analytical Local Structure}
\subsection{Derivatives}
We have been given the following function:
$$f(x, y) = A sin(Vx) + B cos(Wy)$$
The partial derivatives $f_x, f_y, f_{xx}, f_{xy}$ and $f_{yy}$ can be derived as follows:
\begin{table}[H]
\begin{tabular}{rl}
$f_x$ & $= A \frac{\delta}{\delta x} sin(Vx) + B \frac{\delta}{\delta x} cos(Wy)$ \\
& $= A cos(Vx) \times V + B \times 0$ \\
& $= AV cos(Vx)$ \\
& \\
$f_y$ & $= A \frac{\delta}{\delta y} sin(Vx) + B \frac{\delta}{\delta y} cos(Wy)$ \\
& $= A \times 0 - B sin(Wy) \times W$ \\
& $= -BW sin(Wy)$ \\
& \\
$f_{xx}$ & $= AV \frac{\delta}{\delta x} cos(Vx)$ \\
& $= -AV^2 sin(Vx)$ \\
& \\
$f_{xy}$ & $= AV \frac{\delta}{\delta y} cos(Vx) = 0$ \\
& \\
$f_{yy}$ & $= -BW \frac{\delta}{\delta y} sin(Wy)$ \\
& $= -BW^2 cos(Wy)$ \\
\end{tabular}
\end{table}
\end{document}
\ No newline at end of file
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment