Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
U
uva
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Taddeüs Kroes
uva
Commits
6f95700e
Commit
6f95700e
authored
Oct 11, 2011
by
Taddeüs Kroes
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
improc ass4: Added report with derivatives of f(x, y).
parent
ed89cbc8
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
46 additions
and
0 deletions
+46
-0
improc/ass4/report/report.tex
improc/ass4/report/report.tex
+46
-0
No files found.
improc/ass4/report/report.tex
0 → 100644
View file @
6f95700e
\documentclass
[10pt,a4paper]
{
article
}
\usepackage
[english]
{
babel
}
\usepackage
[utf8]
{
inputenc
}
\usepackage
{
amsmath,hyperref,graphicx,booktabs,float
}
% Paragraph indentation
\setlength
{
\parindent
}{
0pt
}
\setlength
{
\parskip
}{
1ex plus 0.5ex minus 0.2ex
}
\title
{
Image processing 4: Local Structure
}
\author
{
Sander van Veen
\&
Tadde
\"
us Kroes
\\
6167969
\&
6054129
}
\begin{document}
\maketitle
\section
{
Analytical Local Structure
}
\subsection
{
Derivatives
}
We have been given the following function:
$$
f
(
x, y
)
=
A sin
(
Vx
)
+
B cos
(
Wy
)
$$
The partial derivatives
$
f
_
x, f
_
y, f
_{
xx
}
, f
_{
xy
}$
and
$
f
_{
yy
}$
can be derived as follows:
\begin{table}
[H]
\begin{tabular}
{
rl
}
$
f
_
x
$
&
$
=
A
\frac
{
\delta
}{
\delta
x
}
sin
(
Vx
)
+
B
\frac
{
\delta
}{
\delta
x
}
cos
(
Wy
)
$
\\
&
$
=
A cos
(
Vx
)
\times
V
+
B
\times
0
$
\\
&
$
=
AV cos
(
Vx
)
$
\\
&
\\
$
f
_
y
$
&
$
=
A
\frac
{
\delta
}{
\delta
y
}
sin
(
Vx
)
+
B
\frac
{
\delta
}{
\delta
y
}
cos
(
Wy
)
$
\\
&
$
=
A
\times
0
-
B sin
(
Wy
)
\times
W
$
\\
&
$
=
-
BW sin
(
Wy
)
$
\\
&
\\
$
f
_{
xx
}$
&
$
=
AV
\frac
{
\delta
}{
\delta
x
}
cos
(
Vx
)
$
\\
&
$
=
-
AV
^
2
sin
(
Vx
)
$
\\
&
\\
$
f
_{
xy
}$
&
$
=
AV
\frac
{
\delta
}{
\delta
y
}
cos
(
Vx
)
=
0
$
\\
&
\\
$
f
_{
yy
}$
&
$
=
-
BW
\frac
{
\delta
}{
\delta
y
}
sin
(
Wy
)
$
\\
&
$
=
-
BW
^
2
cos
(
Wy
)
$
\\
\end{tabular}
\end{table}
\end{document}
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment