Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
U
uva
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Taddeüs Kroes
uva
Commits
4b7f8708
Commit
4b7f8708
authored
Oct 21, 2011
by
Taddeüs Kroes
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
improc ass4: Used linear independency of Gauss function in gD.
parent
86da37b2
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
29 additions
and
32 deletions
+29
-32
improc/ass4/canny.py
improc/ass4/canny.py
+2
-2
improc/ass4/gauss.py
improc/ass4/gauss.py
+27
-30
No files found.
improc/ass4/canny.py
View file @
4b7f8708
...
...
@@ -19,10 +19,10 @@ def canny(F, s, Tl=None, Th=None):
image F. Optionally specify a low and high threshold (Tl and Th) for
hysteresis thresholding."""
# Noise reduction by a Gaussian filter
F
=
gD
(
F
,
s
,
0
,
0
)
[
1
]
F
=
gD
(
F
,
s
,
0
,
0
)
# Find intensity gradient
mask
=
Gauss1
(
1
,
1
)
mask
=
Gauss1
(
1
.4
,
1
)
Gx
=
convolve1d
(
F
,
mask
,
axis
=
1
,
mode
=
'nearest'
)
Gy
=
convolve1d
(
F
,
mask
,
axis
=
0
,
mode
=
'nearest'
)
G
=
zeros
(
F
.
shape
)
...
...
improc/ass4/gauss.py
View file @
4b7f8708
#!/usr/bin/env python
from
numpy
import
zeros
,
arange
,
pi
,
e
,
ceil
,
meshgrid
,
array
from
numpy
import
zeros
,
arange
,
pi
,
e
,
ceil
,
meshgrid
,
array
,
dot
from
matplotlib.pyplot
import
imread
,
imshow
,
plot
,
xlabel
,
ylabel
,
show
,
\
subplot
,
xlim
,
savefig
from
mpl_toolkits.mplot3d
import
Axes3D
...
...
@@ -29,32 +29,35 @@ def Gauss(s):
# Make sure that the sum of all kernel values is equal to one
return
W
/
W
.
sum
()
def
gauss
(
x
,
s
):
def
f_
gauss
(
x
,
s
):
return
e
**
-
(
x
**
2
/
(
2
*
s
**
2
))
/
(
2
*
pi
*
s
**
2
)
def
gauss_der_1
(
x
,
s
):
def
f_
gauss_der_1
(
x
,
s
):
return
-
x
*
e
**
-
(
x
**
2
/
(
2
*
s
**
2
))
/
(
2
*
pi
*
s
**
4
)
def
gauss_der_2
(
x
,
s
):
def
f_
gauss_der_2
(
x
,
s
):
return
(
x
**
2
-
s
**
2
)
*
e
**
-
(
x
**
2
/
(
2
*
s
**
2
))
\
/
(
2
*
pi
*
s
**
6
)
def
Gauss1
(
s
,
order
=
0
):
"""Sample a one-dimensional Gaussian function of scale s."""
f
=
[
gauss
,
gauss_der_1
,
gauss_der_2
][
order
]
f
=
[
f_gauss
,
f_gauss_der_1
,
f_
gauss_der_2
][
order
]
s
=
float
(
s
)
size
=
int
(
ceil
(
3
*
s
))
r
=
2
*
size
+
1
W
=
zeros
(
r
)
r
=
int
(
ceil
(
3
*
s
))
size
=
2
*
r
+
1
W
=
zeros
(
size
)
#t = float(s) ** 2
#a = 1 / (2 * pi * t)
# Sample the Gaussian function
#W = array([a * e ** -((x - size) ** 2 / (2 * t)) for x in xrange(r)])
W
=
array
([
f
(
x
-
size
,
s
)
for
x
in
xrange
(
r
)])
W
=
array
([
f
(
x
-
r
,
s
)
for
x
in
xrange
(
size
)])
# Make sure that the sum of all kernel values is equal to one
return
W
/
W
.
sum
()
if
not
order
:
W
/=
W
.
sum
()
return
W
def
plot_mask
(
W
,
ax
):
""""""
...
...
@@ -64,30 +67,17 @@ def plot_mask(W, ax):
#ax.plot_surface(X, Y, W, rstride=stride, cstride=stride, cmap='jet')
ax
.
plot_surface
(
X
,
Y
,
W
,
rstride
=
1
,
cstride
=
1
,
linewidth
=
0
,
\
antialiased
=
True
,
cmap
=
'jet'
)
ax
.
set_xlabel
(
'
x
'
)
ax
.
set_ylabel
(
'
y
'
)
ax
.
set_xlabel
(
'
y
'
)
ax
.
set_ylabel
(
'
x
'
)
ax
.
set_zlabel
(
'g(x, y)'
)
def
gD
(
F
,
s
,
iorder
,
jorder
):
"""Create the Gaussian derivative convolution of image F."""
funcs
=
[
gauss
,
gauss_der_1
,
gauss_der_2
]
#funcs = [lambda x: e ** -(x ** 2 / (2 * s ** 2)) / (2 * pi * s ** 2), \
# lambda x: -x * e ** -(x ** 2 / (2 * s ** 2)) \
# / (2 * pi * s ** 4), \
# lambda x: (x ** 2 - s ** 2) * e ** -(x ** 2 / (2 * s ** 2)) \
# / (2 * pi * s ** 6)]
size
=
int
(
ceil
(
3
*
s
))
r
=
2
*
size
+
1
iterator
=
map
(
float
,
range
(
r
))
W
=
zeros
((
r
,
r
))
Fx
=
funcs
[
iorder
]
Fy
=
funcs
[
jorder
]
for
x
in
iterator
:
for
y
in
iterator
:
W
[
x
,
y
]
=
Fx
(
x
-
size
,
s
)
*
Fy
(
y
-
size
,
s
)
Fy
=
Gauss1
(
s
,
iorder
)
Fx
=
Fy
if
jorder
==
iorder
else
Gauss1
(
s
,
jorder
)
W
=
dot
(
array
([
Fy
]).
T
,
array
([
Fx
]))
return
W
,
convolve
(
F
,
W
,
mode
=
'nearest'
)
return
convolve
(
F
,
W
,
mode
=
'nearest'
)
if
__name__
==
'__main__'
:
if
len
(
argv
)
<
2
:
...
...
@@ -100,7 +90,14 @@ if __name__ == '__main__':
exit_with_usage
()
s
=
float
(
argv
[
2
])
W
,
G
=
gD
(
F
,
s
,
int
(
argv
[
3
]),
int
(
argv
[
4
]))
iorder
=
int
(
argv
[
3
])
jorder
=
int
(
argv
[
4
])
Fy
=
Gauss1
(
s
,
iorder
)
Fx
=
Fy
if
jorder
==
iorder
else
Gauss1
(
s
,
jorder
)
W
=
dot
(
array
([
Fy
]).
T
,
array
([
Fx
]))
G
=
gD
(
F
,
s
,
iorder
,
jorder
)
subplot
(
131
)
imshow
(
F
,
cmap
=
'gray'
)
plot_mask
(
W
,
subplot
(
132
,
projection
=
'3d'
))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment