Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
U
uva
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Taddeüs Kroes
uva
Commits
2c5a3123
Commit
2c5a3123
authored
Oct 07, 2011
by
Taddeüs Kroes
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
ImProc ass3: Added K-means clustering to recognize Waldo's location.
parent
e19fada3
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
50 additions
and
23 deletions
+50
-23
improc/ass3/.gitignore
improc/ass3/.gitignore
+1
-0
improc/ass3/back_projection.py
improc/ass3/back_projection.py
+49
-23
No files found.
improc/ass3/.gitignore
View file @
2c5a3123
*.txt
*.txt
*.dat
improc/ass3/back_projection.py
100644 → 100755
View file @
2c5a3123
#!/usr/bin/env python
#!/usr/bin/env python
from
numpy
import
zeros
from
math
import
sqrt
from
numpy
import
array
,
zeros
from
matplotlib.pyplot
import
subplot
,
imread
,
imshow
,
show
,
plot
from
matplotlib.pyplot
import
subplot
,
imread
,
imshow
,
show
,
plot
from
intersect
import
col2bin
,
domainIterator
,
colHist
,
histogramIntersect
from
scipy.ndimage
import
correlate
from
scipy.ndimage
import
correlate
from
scipy.cluster.vq
import
kmeans
from
intersect
import
col2bin
,
domainIterator
,
colHist
,
histogramIntersect
def
convolution
(
image
,
radius
):
def
convolution
(
image
,
radius
):
"""Calculate the convolution of an image with a specified circle radius."""
"""Calculate the convolution of an image with a specified circle radius."""
...
@@ -49,38 +52,61 @@ def hbp(image, environment, bins, model, radius):
...
@@ -49,38 +52,61 @@ def hbp(image, environment, bins, model, radius):
print
'Creating convolution...'
print
'Creating convolution...'
return
convolution
(
b
,
radius
)
return
convolution
(
b
,
radius
)
def
loc
(
image
,
color
):
def
find_peaks
(
b
,
threshold
,
d_sq
):
for
p
in
domainIterator
(
image
):
"""Find the location of the peak value of a back projection histogram."""
if
(
image
[
p
]
==
color
).
all
():
# Find all pixels with a value higher than a threshold of the maximum
return
p
# value. Collect K-means estimators on-the-fly.
threshold
*=
b
.
max
()
means
=
[]
use
=
[]
for
p
in
domainIterator
(
b
):
if
b
[
p
]
>=
threshold
:
use
.
append
(
p
)
found
=
False
for
mean
in
means
:
if
(
mean
[
0
]
-
p
[
0
])
**
2
+
(
mean
[
1
]
-
p
[
1
])
**
2
<
d_sq
:
found
=
True
break
return
(
0
,
0
)
if
not
found
:
means
.
append
(
p
)
def
find_image
(
image
,
environment
,
bins
,
model
,
radius
):
# Use K-means to identify possible matches
"""Find the location of the peak value of a back projection histogram."""
m
=
kmeans
(
array
(
use
),
array
(
means
))[
0
]
b
=
hbp
(
image
,
environment
,
bins
,
model
,
radius
)
return
loc
(
b
,
b
.
max
())
return
[
m
[
i
].
tolist
()
for
i
in
xrange
(
m
.
shape
[
0
])]
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
print
'Reading images...'
print
'Reading images...'
waldo
=
imread
(
'waldo.tiff'
)
waldo
=
imread
(
'waldo.tiff'
)
env
=
imread
(
'waldo_env.tiff'
)
env
=
imread
(
'waldo_env.tiff'
)
b
=
hbp
(
waldo
,
env
,
[
64
]
*
3
,
'rgb'
,
10
)
import
pickle
b
=
hbp
(
waldo
,
env
,
[
64
]
*
3
,
'rgb'
,
4
)
pickle
.
dump
(
b
,
open
(
'projection.dat'
,
'w'
))
#b = pickle.load(open('projection.dat', 'r'))
def
plt
(
peaks
):
"""Draw a rectangle around a list of center pixels."""
w
,
h
=
waldo
.
shape
[:
2
]
for
x
,
y
in
peaks
:
l
=
x
-
w
/
2
r
=
x
+
w
/
2
b
=
y
-
h
/
2
t
=
y
+
h
/
2
plot
([
t
,
t
,
b
,
b
,
t
],
[
l
,
r
,
r
,
l
,
l
],
'r-'
)
w
,
h
=
waldo
.
shape
[:
2
]
peaks
=
find_peaks
(
b
,
.
28
,
w
**
2
+
h
**
2
)
subplot
(
121
)
subplot
(
121
)
plt
(
peaks
)
imshow
(
env
,
origin
=
'lower'
)
imshow
(
env
,
origin
=
'lower'
)
subplot
(
122
)
subplot
(
122
)
plt
(
peaks
)
imshow
(
b
,
origin
=
'lower'
)
imshow
(
b
,
origin
=
'lower'
)
# Draw a rectangle around the found center pixel
#x, y = find_image(waldo, env, [64] * 3, 'rgb', 10)
#w, h = waldo.shape[:2]
#l = x - w / 2
#r = x + w / 2
#b = y - h / 2
#t = y + h / 2
#plot([t, t, b, b], [l, r, r, l], 'r-')
#imshow(env, origin='lower')
show
()
show
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment