Commit 0c734114 authored by Taddeüs Kroes's avatar Taddeüs Kroes

improc ass4: Added samples plot.

parent 8ab571b3
......@@ -26,11 +26,11 @@ The partial derivatives $f_x, f_y, f_{xx}, f_{xy}$ and $f_{yy}$ can be derived a
\begin{table}[H]
\begin{tabular}{rl}
$f_x$ & $= A \frac{\delta}{\delta x} sin(Vx) + B \frac{\delta}{\delta x} cos(Wy)$ \\
& $= A cos(Vx) \times V + B \times 0$ \\
& $= A cos(Vx) \cdot V + B \cdot 0$ \\
& $= AV cos(Vx)$ \\
& \\
$f_y$ & $= A \frac{\delta}{\delta y} sin(Vx) + B \frac{\delta}{\delta y} cos(Wy)$ \\
& $= A \times 0 - B sin(Wy) \times W$ \\
& $= A \cdot 0 - B sin(Wy) \cdot W$ \\
& $= -BW sin(Wy)$ \\
& \\
$f_{xx}$ & $= AV \frac{\delta}{\delta x} cos(Vx)$ \\
......
......@@ -26,11 +26,12 @@ FFy = -B * W ** 2 * cos(W * YY)
# Plot F, Fx and Fy sample data next to each other
# Show FFx and FFy as a quiver plot over F
subplot(131)
imshow(F, cmap='gray', extent=(-100, 100) * 2)
extent = (-100, 100) * 2
subplot(221)
imshow(F, cmap='gray', extent=extent)
quiver(yy, xx, FFy, -FFx, color='red')
subplot(132)
imshow(Fx, cmap='gray')
subplot(133)
imshow(Fy, cmap='gray')
subplot(222)
imshow(Fx, cmap='gray', extent=extent)
subplot(223)
imshow(Fy, cmap='gray', extent=extent)
show()
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment