Skip to content
Snippets Groups Projects
Commit c9d72b47 authored by Taddeus Kroes's avatar Taddeus Kroes
Browse files

Fine-tuned fraction rules and updated unit tests accordingly.

parent 08555af7
No related branches found
No related tags found
No related merge requests found
from itertools import combinations, product
import copy
from .utils import least_common_multiple, partition, is_numeric_node, \
evals_to_numeric
......@@ -288,28 +289,6 @@ MESSAGES[divide_by_fraction] = \
_('Move {3} to nominator of fraction {1} / {2}.')
def fraction_scopes(node):
"""
Get the multiplication scopes of the nominator and denominator of a
fraction.
"""
assert node.is_op(OP_DIV)
nominator, denominator = node
if nominator.is_op(OP_MUL):
n_scope = Scope(nominator)
else:
n_scope = Scope(N(OP_MUL, nominator))
if denominator.is_op(OP_MUL):
d_scope = Scope(denominator)
else:
d_scope = Scope(N(OP_MUL, denominator))
return n_scope, d_scope
def is_power_combination(a, b):
"""
Check if two nodes are powers that can be combined in a fraction, for
......@@ -328,37 +307,73 @@ def is_power_combination(a, b):
return a == b
def mult_scope(node):
"""
Get the multiplication scope of a node that may or may no be a
multiplication itself.
"""
if node.is_op(OP_MUL):
return Scope(node)
return Scope(N(OP_MUL, node))
def remove_from_mult_scope(scope, node):
if len(scope) == 1:
scope.replace(node, L(1))
else:
scope.remove(node)
return scope.as_nary_node()
def match_extract_fraction_terms(node):
"""
Divide nominator and denominator by the same part.
Divide nominator and denominator by the same part. If the same root of a
power appears in both nominator and denominator, also extract it so that it
can be reduced to a single power by power division rules.
Examples:
a ^ b * c / (a ^ d * e) -> a ^ b / a ^ d * (c / e)
ab / (ac) -> a / a * (c / e) # =>* c / e
a ^ b * c / (a ^ d * e) -> a ^ b / a ^ d * (c / e) # -> a^(b - d)(c / e)
#If the same root appears in both nominator and denominator, extract it so
#that it can be reduced to a single power by power division rules.
#a ^ p * b / a ^ q -> a ^ p / a ^ q * b / 1
#a ^ p * b / a -> a ^ p / a * b / 1
#a * b / a ^ q -> a / a ^ q * b / 1
ac / b and eval(c) not in Z and eval(a / b) in Z -> a / b * c
"""
# TODO: ac / b -> a / b * c
assert node.is_op(OP_DIV)
nominator, denominator = node
n_scope, d_scope = fraction_scopes(node)
n_scope, d_scope = map(mult_scope, node)
p = []
if len(n_scope) == 1 and len(d_scope) == 1:
return p
# Look for matching parts in scopes
for n, d in product(n_scope, d_scope):
if is_power_combination(n, d):
nominator, denominator = node
for n in n_scope:
# ac / b
if not evals_to_numeric(n):
a_scope = mult_scope(nominator)
a = remove_from_mult_scope(a_scope, n)
if evals_to_numeric(a / denominator):
p.append(P(node, extract_nominator_term, (a, n)))
# a ^ b * c / (a ^ d * e)
for d in [d for d in d_scope if is_power_combination(n, d)]:
p.append(P(node, extract_fraction_terms, (n_scope, d_scope, n, d)))
return p
def extract_nominator_term(root, args):
"""
ac / b and eval(c) not in Z and eval(a / b) in Z -> a / b * c
"""
a, c = args
return a / root[1] * c
def extract_fraction_terms(root, args):
"""
ab / a -> a / a * (b / 1)
......@@ -368,17 +383,8 @@ def extract_fraction_terms(root, args):
"""
n_scope, d_scope, n, d = args
if len(n_scope) == 1:
n_scope.replace(n, L(1))
else:
n_scope.remove(n)
if len(d_scope) == 1:
d_scope.replace(d, L(1))
else:
d_scope.remove(d)
return n / d * (n_scope.as_nary_node() / d_scope.as_nary_node())
return n / d * (remove_from_mult_scope(n_scope, n) \
/ remove_from_mult_scope(d_scope, d))
MESSAGES[extract_fraction_terms] = _('Extract {3} / {4} from fraction {0}.')
......@@ -63,22 +63,22 @@ class TestLeidenOefenopgaveV12(TestCase):
'(a2b^-1)^3(ab2)',
'(a ^ 2 * (1 / b ^ 1)) ^ 3 * ab ^ 2',
'(a ^ 2 * (1 / b)) ^ 3 * ab ^ 2',
'(a ^ 2 * 1 / b) ^ 3 * ab ^ 2',
'(1a ^ 2 / b) ^ 3 * ab ^ 2',
'(a ^ 2 / b) ^ 3 * ab ^ 2',
'(a ^ 2) ^ 3 / b ^ 3 * ab ^ 2',
'a ^ (2 * 3) / b ^ 3 * ab ^ 2',
'a ^ 6 / b ^ 3 * ab ^ 2',
'aa ^ 6 / b ^ 3 * b ^ 2',
'a ^ (1 + 6) / b ^ 3 * b ^ 2',
'a ^ 6 * a / b ^ 3 * b ^ 2',
'a ^ (6 + 1) / b ^ 3 * b ^ 2',
'a ^ 7 / b ^ 3 * b ^ 2',
'b ^ 2 * a ^ 7 / b ^ 3',
'b ^ 2 / b ^ 3 * a ^ 7 / 1',
'b ^ (2 - 3)a ^ 7 / 1',
'b ^ (-1)a ^ 7 / 1',
'1 / b ^ 1 * a ^ 7 / 1',
'1 / b * a ^ 7 / 1',
'a ^ 7 * 1 / b / 1',
'a ^ 7 / b / 1',
'a ^ 7 * b ^ 2 / b ^ 3',
'b ^ 2 / b ^ 3 * (a ^ 7 / 1)',
'b ^ (2 - 3)(a ^ 7 / 1)',
'b ^ (-1)(a ^ 7 / 1)',
'1 / b ^ 1 * (a ^ 7 / 1)',
'1 / b * (a ^ 7 / 1)',
'1 / b * a ^ 7',
'1a ^ 7 / b',
'a ^ 7 / b',
])
......@@ -106,7 +106,8 @@ class TestLeidenOefenopgaveV12(TestCase):
self.assertRewrite([
'4b^-2',
'4(1 / b ^ 2)',
'4 * 1 / b ^ 2',
'1 * 4 / b ^ 2',
'4 / b ^ 2',
])
def test_2_f(self):
......
......@@ -113,7 +113,7 @@ class TestRulesDerivatives(RulesTestCase):
"e ^ (xln(x))(ln(x) + x(1 / (xln(e))))",
"e ^ (xln(x))(ln(x) + x(1 / (x * 1)))",
"e ^ (xln(x))(ln(x) + x(1 / x))",
"e ^ (xln(x))(ln(x) + x * 1 / x)",
"e ^ (xln(x))(ln(x) + 1x / x)",
"e ^ (xln(x))(ln(x) + x / x)",
"e ^ (xln(x))(ln(x) + 1)",
"e ^ ln(x ^ x)(ln(x) + 1)",
......
......@@ -3,7 +3,7 @@ from src.rules.fractions import match_constant_division, division_by_one, \
equalize_denominators, add_nominators, match_multiply_fractions, \
multiply_fractions, multiply_with_fraction, match_divide_fractions, \
divide_fraction, divide_by_fraction, match_extract_fraction_terms, \
constant_to_fraction, extract_fraction_terms
constant_to_fraction, extract_nominator_term, extract_fraction_terms
from src.node import ExpressionNode as N, Scope, OP_MUL
from src.possibilities import Possibility as P
from tests.rulestestcase import RulesTestCase, tree
......@@ -234,6 +234,23 @@ class TestRulesFractions(RulesTestCase):
self.assertEqualPos(match_extract_fraction_terms(root),
[P(root, extract_fraction_terms, (Scope(n), lscp(d), ap, a))])
(l2, a), l3 = n, d = root = tree('2a / 3')
self.assertEqualPos(match_extract_fraction_terms(root),
[P(root, extract_nominator_term, (2, a))])
root = tree('2*4 / 3')
self.assertEqualPos(match_extract_fraction_terms(root), [])
n, d = root = tree('2a / 2')
self.assertEqualPos(match_extract_fraction_terms(root),
[P(root, extract_fraction_terms, (Scope(n), lscp(d), 2, 2)),
P(root, extract_nominator_term, (2, a))])
def test_extract_nominator_term(self):
root, expect = tree('2a / 3, 2 / 3 * a')
l2, a = root[0]
self.assertEqual(extract_nominator_term(root, (l2, a)), expect)
def test_extract_fraction_terms_basic(self):
root, expect = tree('ab / (ca), a / a * (b / c)')
n, d = root
......
......@@ -75,7 +75,9 @@ class TestRulesLineq(RulesTestCase):
'5x = 0 - 5',
'5x = -5',
'5x / 5 = (-5) / 5',
'x / 1 = (-5) / 5',
'5 / 5 * (x / 1) = (-5) / 5',
'1(x / 1) = (-5) / 5',
'1x = (-5) / 5',
'x = (-5) / 5',
'x = -5 / 5',
'x = -1',
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment