Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
T
trs
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Taddeüs Kroes
trs
Commits
c9d72b47
Commit
c9d72b47
authored
Apr 12, 2012
by
Taddeus Kroes
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Fine-tuned fraction rules and updated unit tests accordingly.
parent
08555af7
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
87 additions
and
61 deletions
+87
-61
src/rules/fractions.py
src/rules/fractions.py
+52
-46
tests/test_leiden_oefenopgave_v12.py
tests/test_leiden_oefenopgave_v12.py
+13
-12
tests/test_rules_derivatives.py
tests/test_rules_derivatives.py
+1
-1
tests/test_rules_fractions.py
tests/test_rules_fractions.py
+18
-1
tests/test_rules_lineq.py
tests/test_rules_lineq.py
+3
-1
No files found.
src/rules/fractions.py
View file @
c9d72b47
from
itertools
import
combinations
,
product
import
copy
from
.utils
import
least_common_multiple
,
partition
,
is_numeric_node
,
\
evals_to_numeric
...
...
@@ -288,28 +289,6 @@ MESSAGES[divide_by_fraction] = \
_
(
'Move {3} to nominator of fraction {1} / {2}.'
)
def
fraction_scopes
(
node
):
"""
Get the multiplication scopes of the nominator and denominator of a
fraction.
"""
assert
node
.
is_op
(
OP_DIV
)
nominator
,
denominator
=
node
if
nominator
.
is_op
(
OP_MUL
):
n_scope
=
Scope
(
nominator
)
else
:
n_scope
=
Scope
(
N
(
OP_MUL
,
nominator
))
if
denominator
.
is_op
(
OP_MUL
):
d_scope
=
Scope
(
denominator
)
else
:
d_scope
=
Scope
(
N
(
OP_MUL
,
denominator
))
return
n_scope
,
d_scope
def
is_power_combination
(
a
,
b
):
"""
Check if two nodes are powers that can be combined in a fraction, for
...
...
@@ -328,37 +307,73 @@ def is_power_combination(a, b):
return
a
==
b
def
mult_scope
(
node
):
"""
Get the multiplication scope of a node that may or may no be a
multiplication itself.
"""
if
node
.
is_op
(
OP_MUL
):
return
Scope
(
node
)
return
Scope
(
N
(
OP_MUL
,
node
))
def
remove_from_mult_scope
(
scope
,
node
):
if
len
(
scope
)
==
1
:
scope
.
replace
(
node
,
L
(
1
))
else
:
scope
.
remove
(
node
)
return
scope
.
as_nary_node
()
def
match_extract_fraction_terms
(
node
):
"""
Divide nominator and denominator by the same part.
Divide nominator and denominator by the same part. If the same root of a
power appears in both nominator and denominator, also extract it so that it
can be reduced to a single power by power division rules.
Examples:
a ^ b * c / (a ^ d * e) -> a ^ b / a ^ d * (c / e)
ab / (ac) -> a / a * (c / e) # =>* c / e
a ^ b * c / (a ^ d * e) -> a ^ b / a ^ d * (c / e) # -> a^(b - d)(c / e)
#If the same root appears in both nominator and denominator, extract it so
#that it can be reduced to a single power by power division rules.
#a ^ p * b / a ^ q -> a ^ p / a ^ q * b / 1
#a ^ p * b / a -> a ^ p / a * b / 1
#a * b / a ^ q -> a / a ^ q * b / 1
ac / b and eval(c) not in Z and eval(a / b) in Z -> a / b * c
"""
# TODO: ac / b -> a / b * c
assert
node
.
is_op
(
OP_DIV
)
nominator
,
denominator
=
node
n_scope
,
d_scope
=
fraction_scopes
(
node
)
n_scope
,
d_scope
=
map
(
mult_scope
,
node
)
p
=
[]
if
len
(
n_scope
)
==
1
and
len
(
d_scope
)
==
1
:
return
p
# Look for matching parts in scopes
for
n
,
d
in
product
(
n_scope
,
d_scope
):
if
is_power_combination
(
n
,
d
):
nominator
,
denominator
=
node
for
n
in
n_scope
:
# ac / b
if
not
evals_to_numeric
(
n
):
a_scope
=
mult_scope
(
nominator
)
a
=
remove_from_mult_scope
(
a_scope
,
n
)
if
evals_to_numeric
(
a
/
denominator
):
p
.
append
(
P
(
node
,
extract_nominator_term
,
(
a
,
n
)))
# a ^ b * c / (a ^ d * e)
for
d
in
[
d
for
d
in
d_scope
if
is_power_combination
(
n
,
d
)]:
p
.
append
(
P
(
node
,
extract_fraction_terms
,
(
n_scope
,
d_scope
,
n
,
d
)))
return
p
def
extract_nominator_term
(
root
,
args
):
"""
ac / b and eval(c) not in Z and eval(a / b) in Z -> a / b * c
"""
a
,
c
=
args
return
a
/
root
[
1
]
*
c
def
extract_fraction_terms
(
root
,
args
):
"""
ab / a -> a / a * (b / 1)
...
...
@@ -368,17 +383,8 @@ def extract_fraction_terms(root, args):
"""
n_scope
,
d_scope
,
n
,
d
=
args
if
len
(
n_scope
)
==
1
:
n_scope
.
replace
(
n
,
L
(
1
))
else
:
n_scope
.
remove
(
n
)
if
len
(
d_scope
)
==
1
:
d_scope
.
replace
(
d
,
L
(
1
))
else
:
d_scope
.
remove
(
d
)
return
n
/
d
*
(
n_scope
.
as_nary_node
()
/
d_scope
.
as_nary_node
())
return
n
/
d
*
(
remove_from_mult_scope
(
n_scope
,
n
)
\
/
remove_from_mult_scope
(
d_scope
,
d
))
MESSAGES
[
extract_fraction_terms
]
=
_
(
'Extract {3} / {4} from fraction {0}.'
)
tests/test_leiden_oefenopgave_v12.py
View file @
c9d72b47
...
...
@@ -63,22 +63,22 @@ class TestLeidenOefenopgaveV12(TestCase):
'(a2b^-1)^3(ab2)'
,
'(a ^ 2 * (1 / b ^ 1)) ^ 3 * ab ^ 2'
,
'(a ^ 2 * (1 / b)) ^ 3 * ab ^ 2'
,
'(
a ^ 2 * 1
/ b) ^ 3 * ab ^ 2'
,
'(
1a ^ 2
/ b) ^ 3 * ab ^ 2'
,
'(a ^ 2 / b) ^ 3 * ab ^ 2'
,
'(a ^ 2) ^ 3 / b ^ 3 * ab ^ 2'
,
'a ^ (2 * 3) / b ^ 3 * ab ^ 2'
,
'a ^ 6 / b ^ 3 * ab ^ 2'
,
'a
a ^ 6
/ b ^ 3 * b ^ 2'
,
'a ^ (
1 + 6
) / b ^ 3 * b ^ 2'
,
'a
^ 6 * a
/ b ^ 3 * b ^ 2'
,
'a ^ (
6 + 1
) / b ^ 3 * b ^ 2'
,
'a ^ 7 / b ^ 3 * b ^ 2'
,
'
b ^ 2 * a ^ 7
/ b ^ 3'
,
'b ^ 2 / b ^ 3 *
a ^ 7 / 1
'
,
'b ^ (2 - 3)
a ^ 7 / 1
'
,
'b ^ (-1)
a ^ 7 / 1
'
,
'1 / b ^ 1 *
a ^ 7 / 1
'
,
'1 / b *
a ^ 7 / 1
'
,
'
a ^ 7 * 1 / b / 1
'
,
'
a ^ 7 / b / 1
'
,
'
a ^ 7 * b ^ 2
/ b ^ 3'
,
'b ^ 2 / b ^ 3 *
(a ^ 7 / 1)
'
,
'b ^ (2 - 3)
(a ^ 7 / 1)
'
,
'b ^ (-1)
(a ^ 7 / 1)
'
,
'1 / b ^ 1 *
(a ^ 7 / 1)
'
,
'1 / b *
(a ^ 7 / 1)
'
,
'
1 / b * a ^ 7
'
,
'
1a ^ 7 / b
'
,
'a ^ 7 / b'
,
])
...
...
@@ -106,7 +106,8 @@ class TestLeidenOefenopgaveV12(TestCase):
self
.
assertRewrite
([
'4b^-2'
,
'4(1 / b ^ 2)'
,
'4 * 1 / b ^ 2'
,
'1 * 4 / b ^ 2'
,
'4 / b ^ 2'
,
])
def
test_2_f
(
self
):
...
...
tests/test_rules_derivatives.py
View file @
c9d72b47
...
...
@@ -113,7 +113,7 @@ class TestRulesDerivatives(RulesTestCase):
"e ^ (xln(x))(ln(x) + x(1 / (xln(e))))"
,
"e ^ (xln(x))(ln(x) + x(1 / (x * 1)))"
,
"e ^ (xln(x))(ln(x) + x(1 / x))"
,
"e ^ (xln(x))(ln(x) +
x * 1
/ x)"
,
"e ^ (xln(x))(ln(x) +
1x
/ x)"
,
"e ^ (xln(x))(ln(x) + x / x)"
,
"e ^ (xln(x))(ln(x) + 1)"
,
"e ^ ln(x ^ x)(ln(x) + 1)"
,
...
...
tests/test_rules_fractions.py
View file @
c9d72b47
...
...
@@ -3,7 +3,7 @@ from src.rules.fractions import match_constant_division, division_by_one, \
equalize_denominators
,
add_nominators
,
match_multiply_fractions
,
\
multiply_fractions
,
multiply_with_fraction
,
match_divide_fractions
,
\
divide_fraction
,
divide_by_fraction
,
match_extract_fraction_terms
,
\
constant_to_fraction
,
extract_fraction_terms
constant_to_fraction
,
extract_
nominator_term
,
extract_
fraction_terms
from
src.node
import
ExpressionNode
as
N
,
Scope
,
OP_MUL
from
src.possibilities
import
Possibility
as
P
from
tests.rulestestcase
import
RulesTestCase
,
tree
...
...
@@ -234,6 +234,23 @@ class TestRulesFractions(RulesTestCase):
self
.
assertEqualPos
(
match_extract_fraction_terms
(
root
),
[
P
(
root
,
extract_fraction_terms
,
(
Scope
(
n
),
lscp
(
d
),
ap
,
a
))])
(
l2
,
a
),
l3
=
n
,
d
=
root
=
tree
(
'2a / 3'
)
self
.
assertEqualPos
(
match_extract_fraction_terms
(
root
),
[
P
(
root
,
extract_nominator_term
,
(
2
,
a
))])
root
=
tree
(
'2*4 / 3'
)
self
.
assertEqualPos
(
match_extract_fraction_terms
(
root
),
[])
n
,
d
=
root
=
tree
(
'2a / 2'
)
self
.
assertEqualPos
(
match_extract_fraction_terms
(
root
),
[
P
(
root
,
extract_fraction_terms
,
(
Scope
(
n
),
lscp
(
d
),
2
,
2
)),
P
(
root
,
extract_nominator_term
,
(
2
,
a
))])
def
test_extract_nominator_term
(
self
):
root
,
expect
=
tree
(
'2a / 3, 2 / 3 * a'
)
l2
,
a
=
root
[
0
]
self
.
assertEqual
(
extract_nominator_term
(
root
,
(
l2
,
a
)),
expect
)
def
test_extract_fraction_terms_basic
(
self
):
root
,
expect
=
tree
(
'ab / (ca), a / a * (b / c)'
)
n
,
d
=
root
...
...
tests/test_rules_lineq.py
View file @
c9d72b47
...
...
@@ -75,7 +75,9 @@ class TestRulesLineq(RulesTestCase):
'5x = 0 - 5'
,
'5x = -5'
,
'5x / 5 = (-5) / 5'
,
'x / 1 = (-5) / 5'
,
'5 / 5 * (x / 1) = (-5) / 5'
,
'1(x / 1) = (-5) / 5'
,
'1x = (-5) / 5'
,
'x = (-5) / 5'
,
'x = -5 / 5'
,
'x = -1'
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment