Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
T
trs
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Taddeüs Kroes
trs
Commits
76db9913
Commit
76db9913
authored
Apr 19, 2012
by
Taddeus Kroes
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added rules that calculate logarithm exponents to see if a logarithm can be reduced to a number.
parent
a0a12318
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
74 additions
and
7 deletions
+74
-7
src/rules/logarithmic.py
src/rules/logarithmic.py
+36
-4
src/rules/precedences.py
src/rules/precedences.py
+4
-2
tests/test_rules_logarithmic.py
tests/test_rules_logarithmic.py
+34
-1
No files found.
src/rules/logarithmic.py
View file @
76db9913
from
itertools
import
combinations
,
product
,
ifilterfalse
import
math
from
.utils
import
find_variables
,
partition
,
divides
,
is_numeric_node
from
..node
import
ExpressionLeaf
as
L
,
OP_LOG
,
OP_ADD
,
OP_MUL
,
OP_POW
,
\
...
...
@@ -219,18 +220,29 @@ def match_factor_out_exponent(node):
This match simplifies a power with a variable in it to a multiplication:
log(a ^ b) -> blog(a)
log(a ^ -b) -> log((a ^ b) ^ -1) # =>* -log(a ^ b)
log(b, a) and a ** y = b with y in Z -> log(a ^ y, a) # =>* y
"""
assert
node
.
is_op
(
OP_LOG
)
p
=
[]
exp
,
base
=
node
if
node
[
0
]
.
is_power
():
a
,
b
=
node
[
0
]
if
exp
.
is_power
():
a
,
b
=
exp
if
b
.
negated
:
p
.
append
(
P
(
node
,
split_negative_exponent
))
p
.
append
(
P
(
node
,
factor_out_exponent
))
if
a
==
base
:
p
.
append
(
P
(
node
,
factor_out_exponent_important
))
else
:
p
.
append
(
P
(
node
,
factor_out_exponent
))
elif
exp
.
is_numeric
()
and
not
exp
.
negated
:
b
,
a
=
exp
.
value
,
base
.
value
y
=
int
(
round
(
math
.
log
(
b
,
a
)))
if
b
==
a
**
y
:
p
.
append
(
P
(
node
,
make_raised_base
,
(
y
,)))
return
p
...
...
@@ -257,7 +269,27 @@ def factor_out_exponent(root, args):
return
b
*
log
(
a
,
base
=
base
)
MESSAGES
[
factor_out_exponent
]
=
_
(
'Factor out exponent {0[0][0]} from {0}.'
)
MESSAGES
[
factor_out_exponent
]
=
_
(
'Factor out exponent {0[0][1]} from {0}.'
)
def
factor_out_exponent_important
(
root
,
args
):
return
factor_out_exponent
(
root
,
args
)
MESSAGES
[
factor_out_exponent_important
]
=
MESSAGES
[
factor_out_exponent
]
def
make_raised_base
(
root
,
args
):
"""
log(b, a) and b ** y = a with y in Z -> log(a ^ y, a) # =>* y
"""
exp
,
base
=
root
y
=
L
(
args
[
0
])
return
log
(
base
.
clone
()
**
y
,
base
=
base
).
negate
(
root
.
negated
)
MESSAGES
[
make_raised_base
]
=
_
(
'Write {0[0]} as a power of {0[1]}.'
)
def
match_factor_in_multiplicant
(
node
):
...
...
src/rules/precedences.py
View file @
76db9913
from
.factors
import
expand_double
,
expand_single
from
.sort
import
move_constant
from
.numerics
import
reduce_fraction_constants
from
.numerics
import
reduce_fraction_constants
,
raise_numerics
from
.logarithmic
import
factor_in_exponent_multiplicant
,
\
factor_out_exponent
,
raised_base
factor_out_exponent
,
raised_base
,
factor_out_exponent_important
from
.derivatives
import
chain_rule
from
.negation
import
double_negation
,
negated_factor
,
negated_nominator
,
\
negated_denominator
...
...
@@ -35,6 +35,8 @@ RELATIVE = [
# Expand 'single' before 'double' to avoid unnessecary complexity
(
expand_single
,
expand_double
),
(
factor_out_exponent_important
,
raise_numerics
),
]
...
...
tests/test_rules_logarithmic.py
View file @
76db9913
...
...
@@ -6,7 +6,8 @@ from src.rules.logarithmic import log, match_constant_logarithm, \
factor_out_exponent
,
match_factor_in_multiplicant
,
\
factor_in_multiplicant
,
match_expand_terms
,
\
expand_multiplication_terms
,
expand_division_terms
,
\
factor_in_exponent_multiplicant
factor_in_exponent_multiplicant
,
factor_out_exponent_important
,
\
make_raised_base
from
src.node
import
Scope
from
src.possibilities
import
Possibility
as
P
from
tests.rulestestcase
import
RulesTestCase
,
tree
...
...
@@ -140,6 +141,27 @@ class TestRulesLogarithmic(RulesTestCase):
[
P
(
root
,
split_negative_exponent
),
P
(
root
,
factor_out_exponent
)])
def
test_match_factor_out_exponent_important
(
self
):
root
=
tree
(
'log(10 ^ 2)'
)
self
.
assertEqualPos
(
match_factor_out_exponent
(
root
),
[
P
(
root
,
factor_out_exponent_important
)])
def
test_match_factor_out_exponent_make_raised_base
(
self
):
root
=
tree
(
'log(100)'
)
self
.
assertEqualPos
(
match_factor_out_exponent
(
root
),
[
P
(
root
,
make_raised_base
,
(
2
,))])
root
=
tree
(
'log(1000)'
)
self
.
assertEqualPos
(
match_factor_out_exponent
(
root
),
[
P
(
root
,
make_raised_base
,
(
3
,))])
root
=
tree
(
'log_2(16)'
)
self
.
assertEqualPos
(
match_factor_out_exponent
(
root
),
[
P
(
root
,
make_raised_base
,
(
4
,))])
root
=
tree
(
'log(99)'
)
self
.
assertEqualPos
(
match_factor_out_exponent
(
root
),
[])
def
test_split_negative_exponent
(
self
):
root
,
expect
=
tree
(
'log(a ^ -b), log((a ^ b) ^ -1)'
)
self
.
assertEqual
(
split_negative_exponent
(
root
,
()),
expect
)
...
...
@@ -148,6 +170,17 @@ class TestRulesLogarithmic(RulesTestCase):
((
a
,
l2
),
l10
)
=
root
=
tree
(
'log(a ^ 2)'
)
self
.
assertEqual
(
factor_out_exponent
(
root
,
()),
l2
*
log
(
a
))
def
test_make_raised_base
(
self
):
root
,
expect
=
tree
(
'log(1000), log(10 ^ 3)'
)
self
.
assertEqual
(
make_raised_base
(
root
,
(
3
,)),
expect
)
root
,
expect
=
tree
(
'log_2(64), log_2(2 ^ 4)'
)
self
.
assertEqual
(
make_raised_base
(
root
,
(
4
,)),
expect
)
def
test_factor_out_exponent_important
(
self
):
((
a
,
l2
),
l10
)
=
root
=
tree
(
'log(10 ^ 2)'
)
self
.
assertEqual
(
factor_out_exponent_important
(
root
,
()),
l2
*
log
(
a
))
def
test_match_factor_in_multiplicant
(
self
):
(
l2
,
log_3
)
=
root
=
tree
(
'2log(3)'
)
self
.
assertEqualPos
(
match_factor_in_multiplicant
(
root
),
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment