Commit 746d7957 authored by Taddeus Kroes's avatar Taddeus Kroes

Added a bunch of square root rewrite rules.

parent e796e899
from ..node import OP_ADD, OP_MUL, OP_DIV, OP_POW, OP_NEG, OP_SIN, OP_COS, \
OP_TAN, OP_DER, OP_LOG, OP_INT, OP_INT_INDEF, OP_EQ, OP_ABS
OP_TAN, OP_DER, OP_LOG, OP_INT, OP_INT_INDEF, OP_EQ, OP_ABS, OP_SQRT
from .groups import match_combine_groups
from .factors import match_expand
from .powers import match_add_exponents, match_subtract_exponents, \
......@@ -29,6 +29,7 @@ from .integrals import match_solve_indef, match_constant_integral, \
match_sum_rule_integral, match_remove_indef_constant
from .lineq import match_move_term
from .absolute import match_factor_out_abs_term
from .sqrt import match_reduce_sqrt
RULES = {
......@@ -65,4 +66,5 @@ RULES = {
OP_INT_INDEF: [match_remove_indef_constant, match_solve_indef],
OP_EQ: [match_move_term],
OP_ABS: [match_factor_out_abs_term],
OP_SQRT: [match_reduce_sqrt],
}
from .factors import expand_double, expand_single
from .sort import move_constant
from .numerics import multiply_one, multiply_zero, reduce_fraction_constants, \
raise_numerics, remove_zero
raise_numerics, remove_zero, multiply_numerics
from .logarithmic import factor_in_exponent_multiplicant, \
factor_out_exponent, raised_base, factor_out_exponent_important
from .derivatives import chain_rule
......@@ -10,6 +10,7 @@ from .negation import double_negation, negated_factor, negated_nominator, \
from .fractions import multiply_with_fraction
from .integrals import factor_out_constant, integrate_variable_root
from .powers import remove_power_of_one
from .sqrt import quadrant_sqrt, extract_sqrt_mult_priority
# Functions to move to the beginning of the possibilities list. Pairs of within
......@@ -48,6 +49,13 @@ RELATIVE = [
# int x dx -> int x ^ 1 dx # do not remove power of one that has
# # deliberately been inserted
(integrate_variable_root, remove_power_of_one),
# When simplifying square roots, bring numeric quadrants out of the
# root first
(extract_sqrt_mult_priority, multiply_numerics),
# sqrt(2 ^ 2) -> 2 # not sqrt 4
(quadrant_sqrt, raise_numerics),
]
......
import math
from .utils import greatest_common_divisor, dividers, is_prime
from ..node import ExpressionLeaf as Leaf, Scope, OP_SQRT, OP_MUL, sqrt
from ..possibilities import Possibility as P, MESSAGES
from ..translate import _
def is_eliminateable_sqrt(n):
if isinstance(n, int):
return n > 3 and int(math.sqrt(n)) ** 2 == n
if n.negated:
return False
if n.is_numeric():
return is_eliminateable_sqrt(n.value)
return n.is_power(2)
def match_reduce_sqrt(node):
"""
sqrt(a ^ 2) -> a
sqrt(a) and eval(sqrt(a)) in Z -> eval(sqrt(a))
sqrt(a) and a == b ^ 2 * c with a,b,c in Z -> sqrt(eval(b ^ 2) * c)
sqrt(ab) -> sqrt(a)sqrt(b)
"""
assert node.is_op(OP_SQRT)
exp = node[0]
if exp.negated:
return []
if exp.is_power(2):
return [P(node, quadrant_sqrt)]
if exp.is_numeric():
reduced = int(math.sqrt(exp.value))
if reduced ** 2 == exp.value:
return [P(node, constant_sqrt, (reduced,))]
div = filter(is_eliminateable_sqrt, dividers(exp.value))
div.sort(lambda a, b: cmp(is_prime(b), is_prime(a)))
return [P(node, split_dividers, (m, exp.value / m)) for m in div]
if exp.is_op(OP_MUL):
scope = Scope(exp)
p = []
for n in scope:
if is_eliminateable_sqrt(n):
p.append(P(node, extract_sqrt_mult_priority, (scope, n)))
else:
p.append(P(node, extract_sqrt_multiplicant, (scope, n)))
return p
return []
def quadrant_sqrt(root, args):
"""
sqrt(a ^ 2) -> a
"""
return root[0][0].negate(root.negated)
MESSAGES[quadrant_sqrt] = \
_('The square root of a quadrant reduces to the raised root.')
def constant_sqrt(root, args):
"""
sqrt(a) and eval(sqrt(a)) in Z -> eval(sqrt(a))
"""
return Leaf(args[0]).negate(root.negated)
MESSAGES[constant_sqrt] = \
_('The square root of {0[0]} is {1}.')
def split_dividers(root, args):
"""
sqrt(a) and b * c = a with a,b,c in Z -> sqrt(a * b)
"""
b, c = args
return sqrt(Leaf(b) * c)
MESSAGES[split_dividers] = _('Write {0[0]} as {1} * {2} to so that {1} can ' \
'be brought outside of the square root.')
def extract_sqrt_multiplicant(root, args):
"""
sqrt(ab) -> sqrt(a)sqrt(b)
"""
scope, a = args
scope.remove(a)
return (sqrt(a) * sqrt(scope.as_nary_node())).negate(root.negated)
MESSAGES[extract_sqrt_multiplicant] = _('Extract {2} from {0}.')
def extract_sqrt_mult_priority(root, args):
"""
sqrt(ab) and sqrt(a) in Z -> sqrt(a)sqrt(b)
"""
return extract_sqrt_multiplicant(root, args)
MESSAGES[extract_sqrt_mult_priority] = MESSAGES[extract_sqrt_multiplicant]
from src.rules.sqrt import is_eliminateable_sqrt, match_reduce_sqrt, \
quadrant_sqrt, constant_sqrt, split_dividers, \
extract_sqrt_multiplicant, extract_sqrt_mult_priority
from src.node import Scope, sqrt
from src.possibilities import Possibility as P
from tests.rulestestcase import RulesTestCase, tree
class TestRulesSqrt(RulesTestCase):
def test_is_eliminateable_sqrt(self):
self.assertFalse(is_eliminateable_sqrt(3))
self.assertTrue(is_eliminateable_sqrt(4))
self.assertTrue(is_eliminateable_sqrt(9))
self.assertTrue(is_eliminateable_sqrt(tree('9')))
self.assertFalse(is_eliminateable_sqrt(tree('-9')))
self.assertFalse(is_eliminateable_sqrt(tree('5')))
self.assertTrue(is_eliminateable_sqrt(tree('a ^ 2')))
self.assertFalse(is_eliminateable_sqrt(tree('a ^ 3')))
self.assertFalse(is_eliminateable_sqrt(tree('a')))
def test_match_reduce_sqrt_none(self):
root = tree('sqrt(a)')
self.assertEqualPos(match_reduce_sqrt(root), [])
root = tree('sqrt(-4)')
self.assertEqualPos(match_reduce_sqrt(root), [])
def test_match_reduce_sqrt_quadrant(self):
root = tree('sqrt(a ^ 2)')
self.assertEqualPos(match_reduce_sqrt(root), [P(root, quadrant_sqrt)])
def test_match_reduce_sqrt_constant(self):
root = tree('sqrt(4)')
self.assertEqualPos(match_reduce_sqrt(root),
[P(root, constant_sqrt, (2,))])
def test_match_reduce_sqrt_dividers(self):
root = tree('sqrt(8)')
self.assertEqualPos(match_reduce_sqrt(root),
[P(root, split_dividers, (4, 2))])
root = tree('sqrt(27)')
self.assertEqualPos(match_reduce_sqrt(root),
[P(root, split_dividers, (9, 3))])
def test_match_reduce_sqrt_mult_priority(self):
root = tree('sqrt(9 * 3)')
self.assertEqualPos(match_reduce_sqrt(root),
[P(root, extract_sqrt_mult_priority, (Scope(root[0]), 9)),
P(root, extract_sqrt_multiplicant, (Scope(root[0]), 3))])
def test_match_reduce_sqrt_mult(self):
((l2, x),) = root = tree('sqrt(2x)')
self.assertEqualPos(match_reduce_sqrt(root),
[P(root, extract_sqrt_multiplicant, (Scope(root[0]), l2)),
P(root, extract_sqrt_multiplicant, (Scope(root[0]), x))])
(((l2, x), y),) = root = tree('sqrt(2xy)')
self.assertEqualPos(match_reduce_sqrt(root),
[P(root, extract_sqrt_multiplicant, (Scope(root[0]), l2)),
P(root, extract_sqrt_multiplicant, (Scope(root[0]), x)),
P(root, extract_sqrt_multiplicant, (Scope(root[0]), y))])
def test_quadrant_sqrt(self):
root, expect = tree('sqrt(a ^ 2), a')
self.assertEqual(quadrant_sqrt(root, ()), expect)
root, expect = tree('-sqrt(a ^ 2), -a')
self.assertEqual(quadrant_sqrt(root, ()), expect)
def test_constant_sqrt(self):
root = tree('sqrt(4)')
self.assertEqual(constant_sqrt(root, (2,)), 2)
def test_split_dividers(self):
root, expect = tree('sqrt(27), sqrt(9 * 3)')
self.assertEqual(split_dividers(root, (9, 3)), expect)
def test_extract_sqrt_multiplicant(self):
root, expect = tree('sqrt(2x), sqrt(2)sqrt(x)')
l2, x = mul = root[0]
self.assertEqual(extract_sqrt_multiplicant(root, (Scope(mul), l2,)),
expect)
root, expect = tree('-sqrt(2x), -sqrt(2)sqrt(x)')
l2, x = mul = root[0]
self.assertEqual(extract_sqrt_multiplicant(root, (Scope(mul), l2,)),
expect)
root, expect = tree('sqrt(2xy), sqrt(x)sqrt(2y)')
(l2, x), y = mul = root[0]
self.assertEqual(extract_sqrt_multiplicant(root, (Scope(mul), x,)),
expect)
def test_extract_sqrt_mult_priority(self):
root, expect = tree('sqrt(9 * 3), sqrt(9)sqrt(3)')
l9, l3 = mul = root[0]
self.assertEqual(extract_sqrt_mult_priority(root, (Scope(mul), l9,)),
expect)
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment