Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
trs
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Taddeüs Kroes
trs
Commits
41f07554
Commit
41f07554
authored
13 years ago
by
Taddeus Kroes
Browse files
Options
Downloads
Patches
Plain Diff
Added a number of derivative rewrite rules.
parent
a156a2b5
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
src/rules/__init__.py
+6
-3
6 additions, 3 deletions
src/rules/__init__.py
src/rules/derivatives.py
+108
-18
108 additions, 18 deletions
src/rules/derivatives.py
tests/test_rules_derivatives.py
+70
-18
70 additions, 18 deletions
tests/test_rules_derivatives.py
with
184 additions
and
39 deletions
src/rules/__init__.py
+
6
−
3
View file @
41f07554
...
@@ -17,7 +17,9 @@ from .negation import match_negated_factor, match_negate_polynome, \
...
@@ -17,7 +17,9 @@ from .negation import match_negated_factor, match_negate_polynome, \
from
.sort
import
match_sort_multiplicants
from
.sort
import
match_sort_multiplicants
from
.goniometry
import
match_add_quadrants
,
match_negated_parameter
,
\
from
.goniometry
import
match_add_quadrants
,
match_negated_parameter
,
\
match_half_pi_subtraction
,
match_standard_radian
match_half_pi_subtraction
,
match_standard_radian
from
src.rules.derivatives
import
match_constant_derivative
from
src.rules.derivatives
import
match_zero_derivative
,
\
match_one_derivative
,
match_variable_power
,
\
match_const_deriv_multiplication
RULES
=
{
RULES
=
{
OP_ADD
:
[
match_add_numerics
,
match_add_constant_fractions
,
OP_ADD
:
[
match_add_numerics
,
match_add_constant_fractions
,
...
@@ -27,7 +29,7 @@ RULES = {
...
@@ -27,7 +29,7 @@ RULES = {
match_negated_factor
,
match_multiply_one
,
match_negated_factor
,
match_multiply_one
,
match_sort_multiplicants
,
match_multiply_fractions
],
match_sort_multiplicants
,
match_multiply_fractions
],
OP_DIV
:
[
match_subtract_exponents
,
match_divide_numerics
,
OP_DIV
:
[
match_subtract_exponents
,
match_divide_numerics
,
match_constant_division
,
match_divide_fractions
,
\
match_constant_division
,
match_divide_fractions
,
match_negated_division
,
match_equal_fraction_parts
],
match_negated_division
,
match_equal_fraction_parts
],
OP_POW
:
[
match_multiply_exponents
,
match_duplicate_exponent
,
OP_POW
:
[
match_multiply_exponents
,
match_duplicate_exponent
,
match_raised_fraction
,
match_remove_negative_exponent
,
match_raised_fraction
,
match_remove_negative_exponent
,
...
@@ -39,5 +41,6 @@ RULES = {
...
@@ -39,5 +41,6 @@ RULES = {
OP_COS
:
[
match_negated_parameter
,
match_half_pi_subtraction
,
OP_COS
:
[
match_negated_parameter
,
match_half_pi_subtraction
,
match_standard_radian
],
match_standard_radian
],
OP_TAN
:
[
match_standard_radian
],
OP_TAN
:
[
match_standard_radian
],
OP_DERIV
:
[
match_constant_derivative
],
OP_DERIV
:
[
match_zero_derivative
,
match_one_derivative
,
match_variable_power
,
match_const_deriv_multiplication
],
}
}
This diff is collapsed.
Click to expand it.
src/rules/derivatives.py
+
108
−
18
View file @
41f07554
from
itertools
import
combinations
from
itertools
import
combinations
from
.utils
import
find_variables
from
.utils
import
find_variables
from
..node
import
Scope
,
OP_DERIV
,
ExpressionNode
as
N
,
ExpressionLeaf
as
L
from
.logarithmic
import
ln
from
..node
import
ExpressionNode
as
N
,
ExpressionLeaf
as
L
,
Scope
,
OP_DERIV
,
\
OP_MUL
from
..possibilities
import
Possibility
as
P
,
MESSAGES
from
..possibilities
import
Possibility
as
P
,
MESSAGES
from
..translate
import
_
from
..translate
import
_
...
@@ -36,23 +38,48 @@ def get_derivation_variable(node, variables=None):
...
@@ -36,23 +38,48 @@ def get_derivation_variable(node, variables=None):
return
list
(
variables
)[
0
]
return
list
(
variables
)[
0
]
def
match_constant_derivative
(
node
):
def
chain_rule
(
root
,
args
):
"""
"""
der(x) -> 1
Apply the chain rule:
der(x, x) -> 1
[f(g(x)]
'
-> f
'
(g(x)) * g
'
(x)
der(x, y) -> x
f
'
(g(x)) is not expressable in the current syntax, so calculate it directly
using the application function in the arguments. g
'
(x) is simply expressed
as der(g(x), x).
"""
g
,
f_deriv
,
f_deriv_args
=
args
x
=
root
[
1
]
if
len
(
root
)
>
1
else
None
return
f_deriv
(
root
,
f_deriv_args
)
*
der
(
g
,
x
)
def
match_zero_derivative
(
node
):
"""
der(x, y) -> 0
der(n) -> 0
der(n) -> 0
"""
"""
assert
node
.
is_op
(
OP_DERIV
)
assert
node
.
is_op
(
OP_DERIV
)
variables
=
find_variables
(
node
[
0
])
variables
=
find_variables
(
node
[
0
])
var
=
get_derivation_variable
(
node
,
variables
=
variables
)
var
=
get_derivation_variable
(
node
,
variables
)
if
not
var
or
var
not
in
variables
:
if
not
var
or
var
not
in
variables
:
return
[
P
(
node
,
zero_derivative
,
())]
return
[
P
(
node
,
zero_derivative
)]
return
[]
if
(
node
[
0
]
==
node
[
1
]
if
len
(
node
)
>
1
else
node
[
0
].
is_variable
()):
def
match_one_derivative
(
node
):
return
[
P
(
node
,
one_derivative
,
())]
"""
der(x) -> 1 # Implicit x
der(x, x) -> 1 # Explicit x
"""
assert
node
.
is_op
(
OP_DERIV
)
var
=
get_derivation_variable
(
node
)
if
var
and
node
[
0
]
==
L
(
var
):
return
[
P
(
node
,
one_derivative
)]
return
[]
return
[]
...
@@ -70,7 +97,8 @@ MESSAGES[one_derivative] = _('Variable {0[0]} has derivative 1.')
...
@@ -70,7 +97,8 @@ MESSAGES[one_derivative] = _('Variable {0[0]} has derivative 1.')
def
zero_derivative
(
root
,
args
):
def
zero_derivative
(
root
,
args
):
"""
"""
der(n) -> 0
der(x, y) -> 0
der(n) -> 0
"""
"""
return
L
(
0
)
return
L
(
0
)
...
@@ -78,27 +106,89 @@ def zero_derivative(root, args):
...
@@ -78,27 +106,89 @@ def zero_derivative(root, args):
MESSAGES
[
zero_derivative
]
=
_
(
'
Constant {0[0]} has derivative 0.
'
)
MESSAGES
[
zero_derivative
]
=
_
(
'
Constant {0[0]} has derivative 0.
'
)
def
match_const_deriv_multiplication
(
node
):
"""
[f(c * x)]
'
-> c * [f(x)]
'
"""
assert
node
.
is_op
(
OP_DERIV
)
p
=
[]
if
node
[
0
].
is_op
(
OP_MUL
):
scope
=
Scope
(
node
[
0
])
for
n
in
scope
:
if
n
.
is_numeric
():
p
.
append
(
P
(
node
,
const_deriv_multiplication
,
(
scope
,
n
)))
return
p
def
const_deriv_multiplication
(
root
,
args
):
"""
[f(c * x)]
'
-> c * [f(x)]
'
"""
scope
,
c
=
args
scope
.
remove
(
c
)
x
=
L
(
get_derivation_variable
(
root
))
# FIXME: is the explicit 'x' parameter necessary?
return
c
*
der
(
scope
.
as_nary_node
(),
x
)
MESSAGES
[
const_deriv_multiplication
]
=
\
_
(
'
Bring multiplication with {2} in derivative {0} to the outside.
'
)
def
match_variable_power
(
node
):
def
match_variable_power
(
node
):
"""
"""
der(x ^ n) -> n * x ^ (n - 1)
der(x ^ n) -> n * x ^ (n - 1)
der(x ^ n, x) -> n * x ^ (n - 1)
der(x ^ n, x) -> n * x ^ (n - 1)
der(
x ^
f(x)) -> n *
x
^ (n - 1)
der(f(x)
^ n
) -> n *
f(x)
^ (n - 1)
* der(f(x)) # Chain rule
"""
"""
assert
node
.
is_op
(
OP_DERIV
)
assert
node
.
is_op
(
OP_DERIV
)
if
node
[
0
].
is_power
():
if
not
node
[
0
].
is_power
():
x
,
n
=
node
[
0
]
return
[]
root
,
exponent
=
node
[
0
]
rvars
=
find_variables
(
root
)
evars
=
find_variables
(
exponent
)
x
=
get_derivation_variable
(
node
,
rvars
|
evars
)
if
x
.
is_variable
():
if
x
in
rvars
and
x
not
in
evars
:
return
[
P
(
node
,
variable_power
,
())]
if
root
.
is_variable
():
return
[
P
(
node
,
variable_root
)]
return
[
P
(
node
,
chain_rule
,
(
root
,
variable_root
,
()))]
elif
not
x
in
rvars
and
x
in
evars
:
if
exponent
.
is_variable
():
return
[
P
(
node
,
variable_exponent
)]
return
[
P
(
node
,
chain_rule
,
(
root
,
variable_exponent
,
()))]
return
[]
return
[]
def
variable_
power
(
root
,
args
):
def
variable_
root
(
root
,
args
):
"""
"""
der(x ^ n, x) -> n * x ^ (n - 1)
der(x ^ n, x) -> n * x ^ (n - 1)
"""
"""
x
,
n
=
args
x
,
n
=
root
[
0
]
return
n
*
x
**
(
n
-
1
)
def
variable_exponent
(
root
,
args
):
"""
der(g ^ x, x) -> g ^ x * ln(g)
Note that (in combination with logarithmic/constant rules):
der(e ^ x) -> e ^ x * ln(e) -> e ^ x * 1 -> e ^ x
"""
# TODO: Put above example 'der(e ^ x)' in unit test
g
,
x
=
root
[
0
]
return
n
*
x
^
(
n
-
1
)
return
g
*
*
x
*
ln
(
g
)
This diff is collapsed.
Click to expand it.
tests/test_rules_derivatives.py
+
70
−
18
View file @
41f07554
from
src.rules.derivatives
import
get_derivation_variable
,
\
from
src.rules.derivatives
import
der
,
get_derivation_variable
,
\
match_constant_derivative
,
one_derivative
,
zero_derivative
match_zero_derivative
,
match_one_derivative
,
one_derivative
,
\
zero_derivative
,
match_variable_power
,
variable_root
,
\
match_const_deriv_multiplication
,
const_deriv_multiplication
,
\
chain_rule
from
src.node
import
Scope
from
src.possibilities
import
Possibility
as
P
from
src.possibilities
import
Possibility
as
P
from
tests.rulestestcase
import
RulesTestCase
,
tree
from
tests.rulestestcase
import
RulesTestCase
,
tree
...
@@ -14,27 +18,75 @@ class TestRulesDerivatives(RulesTestCase):
...
@@ -14,27 +18,75 @@ class TestRulesDerivatives(RulesTestCase):
self
.
assertRaises
(
ValueError
,
tree
,
'
der(xy)
'
)
self
.
assertRaises
(
ValueError
,
tree
,
'
der(xy)
'
)
def
test_match_constant_derivative
(
self
):
def
test_match_zero_derivative
(
self
):
root
=
tree
(
'
der(x)
'
)
self
.
assertEqualPos
(
match_constant_derivative
(
root
),
[
P
(
root
,
one_derivative
,
())])
root
=
tree
(
'
der(x, x)
'
)
self
.
assertEqualPos
(
match_constant_derivative
(
root
),
[
P
(
root
,
one_derivative
,
())])
root
=
tree
(
'
der(x, y)
'
)
root
=
tree
(
'
der(x, y)
'
)
self
.
assertEqualPos
(
match_
constant
_derivative
(
root
),
self
.
assertEqualPos
(
match_
zero
_derivative
(
root
),
[
P
(
root
,
zero_derivative
,
()
)])
[
P
(
root
,
zero_derivative
)])
root
=
tree
(
'
der(2)
'
)
root
=
tree
(
'
der(2)
'
)
self
.
assertEqualPos
(
match_constant_derivative
(
root
),
self
.
assertEqualPos
(
match_zero_derivative
(
root
),
[
P
(
root
,
zero_derivative
,
())])
[
P
(
root
,
zero_derivative
)])
def
test_zero_derivative
(
self
):
root
=
tree
(
'
der(1)
'
)
self
.
assertEqual
(
zero_derivative
(
root
,
()),
0
)
def
test_match_one_derivative
(
self
):
root
=
tree
(
'
der(x)
'
)
self
.
assertEqualPos
(
match_one_derivative
(
root
),
[
P
(
root
,
one_derivative
)])
root
=
tree
(
'
der(x, x)
'
)
self
.
assertEqualPos
(
match_one_derivative
(
root
),
[
P
(
root
,
one_derivative
)])
def
test_one_derivative
(
self
):
def
test_one_derivative
(
self
):
root
=
tree
(
'
der(x)
'
)
root
=
tree
(
'
der(x)
'
)
self
.
assertEqual
(
one_derivative
(
root
,
()),
1
)
self
.
assertEqual
(
one_derivative
(
root
,
()),
1
)
def
test_zero_derivative
(
self
):
def
test_match_const_deriv_multiplication
(
self
):
root
=
tree
(
'
der(1)
'
)
root
=
tree
(
'
der(2x)
'
)
self
.
assertEqual
(
zero_derivative
(
root
,
()),
0
)
l2
,
x
=
root
[
0
]
self
.
assertEqualPos
(
match_const_deriv_multiplication
(
root
),
[
P
(
root
,
const_deriv_multiplication
,
(
Scope
(
root
[
0
]),
l2
))])
def
test_match_const_deriv_multiplication_multiple_constants
(
self
):
root
=
tree
(
'
der(2x * 3)
'
)
(
l2
,
x
),
l3
=
root
[
0
]
scope
=
Scope
(
root
[
0
])
self
.
assertEqualPos
(
match_const_deriv_multiplication
(
root
),
[
P
(
root
,
const_deriv_multiplication
,
(
scope
,
l2
)),
P
(
root
,
const_deriv_multiplication
,
(
scope
,
l3
))])
def
test_const_deriv_multiplication
(
self
):
root
=
tree
(
'
der(2x)
'
)
l2
,
x
=
root
[
0
]
args
=
Scope
(
root
[
0
]),
l2
self
.
assertEqual
(
const_deriv_multiplication
(
root
,
args
),
l2
*
der
(
x
,
x
))
def
test_match_variable_power
(
self
):
root
,
x
,
l2
=
tree
(
'
der(x ^ 2), x, 2
'
)
self
.
assertEqualPos
(
match_variable_power
(
root
),
[
P
(
root
,
variable_root
)])
def
test_match_variable_power_chain_rule
(
self
):
root
,
x
,
l2
,
x3
=
tree
(
'
der((x ^ 3) ^ 2), x, 2, x ^ 3
'
)
self
.
assertEqualPos
(
match_variable_power
(
root
),
[
P
(
root
,
chain_rule
,
(
x3
,
variable_root
,
()))])
# Below is not mathematically underivable, it's just not within the
# scope of our program
root
,
x
=
tree
(
'
der(x ^ x), x
'
)
self
.
assertEqualPos
(
match_variable_power
(
root
),
[])
def
test_variable_root
(
self
):
root
=
tree
(
'
der(x ^ 2)
'
)
x
,
n
=
root
[
0
]
self
.
assertEqual
(
variable_root
(
root
,
()),
n
*
x
**
(
n
-
1
))
def
test_variable_root_chain_rule
(
self
):
pass
def
test_chain_rule
(
self
):
pass
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment