Commit ab33ab86 authored by Taddeus Kroes's avatar Taddeus Kroes

Merged conflicts.

parents c8dba202 39bfc57a
......@@ -180,7 +180,6 @@ $L5:
addu $3,$16,$17
addu $2,$3,$2
sw $2,24($fp)
lw $2,24($fp)
beq $2,$0,$L8
lw $2,24($fp)
li $3,0x00000003 # 3
......@@ -410,4 +409,4 @@ $L27:
lw $fp,24($sp)
addu $sp,$sp,32
j $31
.end main
\ No newline at end of file
.end main
......@@ -116,6 +116,50 @@ This is a less efficient method then the dag, but because the basic blocks are
in general not very large and the execution time of the optimizer is not a
primary concern, this is not a big problem.
\subsubsection*{Fold constants}
\subsubsection*{Copy propagation}
Copy propagation `unpacks' a move instruction, by replacing its destination
address with its source address in the code following the move instruction.
This is not a direct optimization, but this does allow for a more effective
dead code elimination.
The code of the block is checked linearly. When a move operation is
encountered, the source and destination address of this move are stored. When
a normal operation with a source and a destination address are found, a number
of checks are performed.
The first check is whether the destination address is stored as a destination
address of a move instruction. If so, this move instruction is no longer valid,
so the optimizations can not be done. Otherwise, continue with the second
check.
In the second check, the source address is compared to the destination
addresses of all still valid move operations. If these are the same, in the
current operation the found source address is replaced with the source address
of the move operation.
An example would be the following:
\begin{verbatim}
move $regA, $regB move $regA, $regB
... ...
Code not writing $regA, -> ...
$regB ...
... ...
addu $regC, $regA, ... addu $regC, $regB, ...
\end{verbatim}
This code shows that \texttt{\$regA} is replaced with \texttt{\$regB}. This
way, the move instruction might have become useless, and it will then be
removed by the dead code elimination.
\subsubsection*{Algebraic transformations}
\section{Implementation}
We decided to implement the optimization in Python. We chose this programming
......@@ -240,6 +284,7 @@ addu $regC, $regB, 4 move $regC, $regD
# Constant folding
# Copy propagation
move $regA, $regB move $regA, $regB
... ...
......@@ -247,5 +292,17 @@ Code not writing $regA, -> ...
$regB ...
... ...
addu $regC, $regA, ... addu $regC, $regB, ...
# Algebraic transformations
addu $regA, $regB, 0 -> move $regA, $regB
subu $regA, $regB, 0 -> move $regA, $regB
mult $regA, $regB, 1 -> move $regA, $regB
mult $regA, $regB, 0 -> li $regA, 0
mult $regA, $regB, 2 -> sll $regA, $regB, 1
\end{verbatim}
\end{document}
......@@ -3,7 +3,7 @@ from src.dataflow import find_basic_blocks
from redundancies import remove_redundant_jumps, move_1, move_2, move_3, \
move_4, load, shift, add
from advanced import eliminate_common_subexpressions, fold_constants, \
copy_propagation
copy_propagation, algebraic_transformations
def remove_redundancies(block):
......@@ -31,7 +31,8 @@ def optimize_block(block):
while remove_redundancies(block) \
| eliminate_common_subexpressions(block) \
| fold_constants(block) \
| copy_propagation(block):
| copy_propagation(block)\
| algebraic_transformations(block):
pass
......@@ -40,7 +41,7 @@ def optimize(statements, verbose=0):
optimization functions."""
# Optimize on a global level
o = len(statements)
optimize_global(statements)
remove_redundant_jumps(statements)
g = len(statements)
# Optimize basic blocks
......
from src.statement import Statement as S
from math import log
def reg_dead_in(var, context):
"""Check if a register is `dead' in a given list of statements."""
......@@ -182,10 +182,16 @@ def fold_constants(block):
def copy_propagation(block):
"""
Replace a variable with its original variable after a move if possible, by
walking through the code, storing move operations and checking whether it
changes or whether a variable can be replaced. This way, the move statement
might be a target for dead code elimination.
Unpack a move instruction, by replacing its destination
address with its source address in the code following the move instruction.
This way, the move statement might be a target for dead code elimination.
move $regA, $regB move $regA, $regB
... ...
Code not writing $regA, -> ...
$regB ...
... ...
addu $regC, $regA, ... addu $regC, $regB, ...
"""
moves_from = []
moves_to = []
......@@ -233,25 +239,31 @@ def copy_propagation(block):
def algebraic_transformations(block):
"""
Change ineffective or useless algebraic transformations. Handled are:
- x = x + 0 -> remove
- x = x - 0 -> remove
- x = x * 1 -> remove
- x = x * 2 -> x = x << 1
- x = y + 0 -> x = y
- x = y - 0 -> x = y
- x = y * 1 -> x = y
- x = y * 0 -> x = 0
- x = y * 2 -> x = x << 1
"""
changed = False
while not block.end():
changed = True
s = block.read()
if (s.is_command('addu') or s.is_command('subu')) and s[2] == 0:
block.replace(1, [])
block.replace(1, [S('command', 'move', s[0], s[1])])
changed = True
elif s.is_command('mult') and s[2] == 1:
block.replace(1, [])
elif s.is_command('mult') and s[2] == 2:
new_command = S(['command', 'sll', s[0], s[1], 1])
block.replace(1, [new_command])
else:
changed = False
block.replace(1, [S('command', 'move', s[0], s[1])])
changed = True
elif s.is_command('mult') and s[2] == 0:
block.replace(1, [S('command', 'li', '$1', to_hex(0))])
changed = True
elif s.is_command('mult'):
shift_amount = log(s[2], 2)
if shift_amount.is_integer():
new_command = S('command', 'sll', s[0], s[1], shift_amount)
block.replace(1, [new_command])
changed = True
return changed
......@@ -90,8 +90,84 @@ class TestOptimizeAdvanced(unittest.TestCase):
block = B([self.foo,
S('command', 'addu', '$1', '$2', 0),
self.bar])
self.assertTrue(algebraic_transformations(block))
self.assertEqual(block.statements, [self.foo,
S('command', 'move', '$1', '$2'),
self.bar])
def test_algebraic_transforms_add1(self):
arguments = [self.foo,
S('command', 'addu', '$1', '$2', 1),
self.bar]
block = B(arguments)
self.assertFalse(algebraic_transformations(block))
self.assertEqual(block.statements, arguments)
def test_algebraic_transforms_sub0(self):
block = B([self.foo,
S('command', 'subu', '$1', '$2', 0),
self.bar])
self.assertTrue(algebraic_transformations(block))
self.assertEqual(block.statements, [self.foo,
S('command', 'move', '$1', '$2'),
self.bar])
def test_algebraic_transforms_sub1(self):
arguments = [self.foo,
S('command', 'subu', '$1', '$2', 1),
self.bar]
block = B(arguments)
self.assertFalse(algebraic_transformations(block))
self.assertEqual(block.statements, arguments)
def test_algebraic_transforms_mult0(self):
block = B([self.foo,
S('command', 'mult', '$1', '$2', 0),
self.bar])
self.assertTrue(algebraic_transformations(block))
self.assertEqual(block.statements, [self.foo,
S('command', 'li', '$1', '0x00000000'),
self.bar])
def test_algebraic_transforms_mult1(self):
block = B([self.foo,
S('command', 'mult', '$1', '$2', 1),
self.bar])
self.assertTrue(algebraic_transformations(block))
self.assertEqual(block.statements, [self.foo,
S('command', 'move', '$1', '$2'),
self.bar])
def test_algebraic_transforms_mult2(self):
block = B([self.foo,
S('command', 'mult', '$1', '$2', 2),
self.bar])
# self.assertTrue(copy_propagation(block))
algebraic_transformations(block)
self.assertTrue(algebraic_transformations(block))
self.assertEqual(block.statements, [self.foo,
S('command', 'sll', '$1', '$2', 1),
self.bar])
def test_algebraic_transforms_mult16(self):
block = B([self.foo,
S('command', 'mult', '$1', '$2', 16),
self.bar])
self.assertTrue(algebraic_transformations(block))
self.assertEqual(block.statements, [self.foo,
S('command', 'sll', '$1', '$2', 4),
self.bar])
def test_algebraic_transforms_mult3(self):
arguments = [self.foo,
S('command', 'mult', '$1', '$2', 3),
self.bar]
block = B(arguments)
self.assertFalse(algebraic_transformations(block))
self.assertEqual(block.statements, arguments)
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment