Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
P
peephole
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Taddeüs Kroes
peephole
Commits
47ddae61
Commit
47ddae61
authored
Dec 29, 2011
by
Taddeus Kroes
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'master' of github.com:taddeus/peephole
parents
d9813d87
28c6e498
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
76 additions
and
55 deletions
+76
-55
benchmarks/build/test.s
benchmarks/build/test.s
+1
-1
report/report.tex
report/report.tex
+23
-36
src/statement.py
src/statement.py
+46
-18
tests/test_statement.py
tests/test_statement.py
+6
-0
No files found.
benchmarks/build/test.s
View file @
47ddae61
...
...
@@ -6,7 +6,7 @@
#
-
mgas
-
mgpOPT
#
Cc1
arguments
(-
G
value
=
8
,
Cpu
=
default
,
ISA
=
1
)
:
#
-
quiet
-
dumpbase
-
o
#
-
quiet
-
dumpbase
-
O0
-
o
gcc2_compiled
.:
__gnu_compiled_c
:
...
...
report/report.tex
View file @
47ddae61
...
...
@@ -35,7 +35,7 @@ the keywords in to an action.
\section
{
Design
}
There are two general types of o
f o
ptimizations of the assembly code, global
There are two general types of optimizations of the assembly code, global
optimizations and optimizations on a so-called basic block. These optimizations
will be discussed separately
...
...
@@ -99,6 +99,16 @@ Appendix \ref{opt}.
A more advanced optimization is common subexpression elimination. This means
that expensive operations as a multiplication or addition are performed only
once and the result is then `copied' into variables where needed.
\begin
{
verbatim
}
addu
$
2,
$
4
,
$
3 addu =
$
t
1
,
$
4,
$
3
... mov
=
$
2,
$
t
1
...
-
> ...
... ...
addu
$
5,
$
4
,
$
3 mov =
$
4
,
$
t1
\end{verbatim}
A standard method for doing this is the creation of a DAG or Directed Acyclic
Graph. However, this requires a fairly advanced implementation. Our
...
...
@@ -112,27 +122,13 @@ We now add the instruction above the first use, and write the result in a new
variable. Then all occurrences of this expression can be replaced by a move of
from new variable into the original destination variable of the instruction.
This is a less efficient method then the
DAG
, but because the basic blocks are
This is a less efficient method then the
dag
, but because the basic blocks are
in general not very large and the execution time of the optimizer is not a
primary concern, this is not a big problem.
\subsubsection
*
{
Constant folding
}
\subsubsection*
{
Fold constants
}
Another optimization is to do constant folding. Constant folding is replacing
a expensive step like addition with a more simple step like loading a constant.
Of course, this is not always possible. It is possible in cases where you apply
an operation on two constants, or a constant and a variable of which you know
for sure that it always has a certain value at that point. For example:
\begin
{
verbatim
}
li
$
regA, 1 li
$
regA,
1
addu
$
regB,
$
regA,
2
-
> li
$
regB, 3
\end{verbatim}
Of course, if
\texttt
{
\$
regA
}
is not used after this, it can be removed, which
will be done by the dead code elimination.
One problem we encountered with this is that the use of a
\texttt
{
li
}
is that
the program often also stores this in the memory, so we had to check whether
this was necessary here as well.
\subsubsection*
{
Copy propagation
}
...
...
@@ -159,11 +155,12 @@ of the move operation.
An example would be the following:
\begin{verbatim}
move
$
regA,
$
regB move
$
regA,
$
regB
... ...
Code not writing
$
regA,
$
regB -> ...
... ...
addu
$
regC,
$
regA, ... addu
$
regC,
$
regB, ...
move
$
regA,
$
regB move
$
regA,
$
regB
... ...
Code not writing
$
regA,
-
> ...
$
regB ...
... ...
addu
$
regC,
$
regA, ... addu
$
regC,
$
regB, ...
\end{verbatim}
This code shows that
\texttt
{
\$
regA
}
is replaced with
\texttt
{
\$
regB
}
. This
way, the move instruction might have become useless, and it will then be
...
...
@@ -171,18 +168,7 @@ removed by the dead code elimination.
\subsubsection*
{
Algebraic transformations
}
Some expression can easily be replaced with more simple once if you look at
what they are saying algebraically. An example is the statement
$
x
=
y
+
0
$
, or
in Assembly
\texttt
{
addu
\$
1,
\$
2, 0
}
. This can easily be changed into
$
x
=
y
$
or
\texttt
{
move
\$
1,
\$
2
}
.
Another case is the multiplication with a power of two. This can be done way
more efficiently by shifting left a number of times. An example:
\texttt
{
mult
\$
regA,
\$
regB, 4 -> sll
\$
regA,
\$
regB, 2
}
. We perform this
optimization for any multiplication with a power of two.
There are a number of such cases, all of which are once again stated in
appendix
\ref
{
opt
}
.
\section
{
Implementation
}
...
...
@@ -206,7 +192,7 @@ languages like we should do otherwise since Lex and Yacc are coupled with C.
The decision was made to not recognize exactly every possible instruction in
the parser, but only if something is for example a command, a comment or a gcc
directive. We then transform per line to a object called a Statement. A
directive. We then transform per line to a
n
object called a Statement. A
statement has a type, a name and optionally a list of arguments. These
statements together form a statement list, which is placed in another object
called a Block. In the beginning there is one block for the entire program, but
...
...
@@ -219,7 +205,7 @@ The optimizations are done in two different steps. First the global
optimizations are performed, which are only the optimizations on branch-jump
constructions. This is done repeatedly until there are no more changes.
After all possible global optimizations are done, the program is sep
a
rated into
After all possible global optimizations are done, the program is sep
e
rated into
basic blocks. The algorithm to do this is described earlier, and means all
jump and branch instructions are called leaders, as are their targets. A basic
block then goes from leader to leader.
...
...
@@ -231,7 +217,8 @@ steps can be done to optimize something.
\subsection
{
Writing
}
Once all the optimizations have been done, the IR needs to be rewritten into
Assembly code, so the xgcc cross compiler can make binary code out of it.
Assembly code. After this step the xgcc crosscompiler can make binary code from
the generated Assembly code.
The writer expects a list of statements, so first the blocks have to be
concatenated again into a list. After this is done, the list is passed on to
...
...
src/statement.py
View file @
47ddae61
...
...
@@ -65,6 +65,11 @@ class Statement:
return
self
.
is_command
()
\
and
re
.
match
(
'^beq|bne|blez|bgtz|bltz|bgez|bct|bcf$'
,
\
self
.
name
)
def
is_branch_zero
(
self
):
"""Check if statement is a branch that compares with zero."""
return
self
.
is_command
()
\
and
re
.
match
(
'^blez|bgtz|bltz|bgez$'
,
self
.
name
)
def
is_shift
(
self
):
"""Check if the statement is a shift operation."""
...
...
@@ -75,6 +80,11 @@ class Statement:
return
self
.
is_command
()
and
self
.
name
in
[
'lw'
,
'li'
,
'dlw'
,
'l.s'
,
\
'l.d'
]
def
is_store
(
self
):
"""Check if the statement is a store instruction."""
return
self
.
is_command
()
and
self
.
name
in
[
'sw'
,
's.d'
,
'dsw'
,
's.s'
,
\
's.b'
]
def
is_arith
(
self
):
"""Check if the statement is an arithmetic operation."""
return
self
.
is_command
()
\
...
...
@@ -102,7 +112,7 @@ class Statement:
return self.is_command() and re.match('
^
(
xor
|
or
|
and
)
i
?$
', self.name)
def is_double_aritmethic(self):
"""Check if the statement is a arit
hmet
ic .d operator."""
"""Check if the statement is a arit
meth
ic .d operator."""
return self.is_command() and
\
re.match('
^
(
add
|
sub
|
div
|
mul
)
\
.
d
$
', self.name)
...
...
@@ -127,6 +137,10 @@ class Statement:
"""Check if the statement is a convert operator."""
return self.is_command() and re.match('
^
trunc
\
.[
a
-
z
\
.]
*
$
', self.name)
def is_compare(self):
"""Check if the statement is a comparison."""
return self.is_command() and re.match('
^
c
\
.[
a
-
z
\
.]
*
$
', self.name)
def jump_target(self):
"""Get the jump target of this statement."""
if not self.is_jump():
...
...
@@ -136,37 +150,51 @@ class Statement:
def get_def(self):
"""Get the variable that this statement defines, if any."""
instr = ['
move
', '
addu
', '
subu
', '
li
', '
mtc1
', '
dmfc1
']
instr = ['
move
', '
addu
', '
subu
', '
li
', '
mtc1
', '
dmfc1
'
, '
mov
.
d
'
]
if self.is_load_non_immediate() or self.is_arith()
\
or self.is_logical() or self.is_double_arit
hmet
ic()
\
or self.is_logical() or self.is_double_arit
meth
ic()
\
or self.is_move_from_spec() or self.is_double_unary()
\
or self.is_set_if_less() or self.is_convert()
\
or self.is_truncate() or self.is_load()
\
or
(self.is_command and self.name in
instr):
return
self[0
]
or
self.is_command(*
instr):
return
[self[0]
]
return []
def get_use(self):
# TODO: Finish with ALL the available commands!
"""Get the variables that this statement uses, if any."""
instr = ['
addu
', '
subu
', '
mult
', '
div
', '
move
', '
mtc1
', '
mov
.
d
',
\
'
dmfc1
']
use = []
if self.is_binop():
use += self[1:]
elif self.is_command('
move
'):
# Case arg0
if self.is_branch() or self.is_store() or self.is_compare()
\
or self.is_command(*['
mult
', '
div
', '
dsz
']):
if self.name == '
dsz
':
m = re.match('
^
\
d
+
\
(([
^
)]
+
)
\
)
$
', self[0])
use.append(m)
else:
use.append(self[0])
# Case arg1 direct adressing
if (self.is_branch() and not self.is_branch_zero()) or self.is_shift()
\
or self.is_double_arithmetic() or self.is_double_unary()
\
or self.is_logical() or self.is_convert()
\
or self.is_truncate() or self.is_set_if_less()
\
or self.is_command(*instr):
use.append(self[1])
elif self.is_command('
lw
', '
sb
', '
sw
', '
dsw
', '
s
.
s
', '
s
.
d
'):
# Case arg1 relative adressing
if self.is_load_non_immediate() or self.is_store():
m = re.match('
^
\
d
+
\
(([
^
)]
+
)
\
)
$
', self[1])
if m:
use.append(m.group(1))
# '
sw
' also uses its first argument
if self.name in ['
sw
', '
dsw
']:
use.append(self[0])
elif len(self) == 2: # FIXME: temporary fix, manually add all commands
use.append(self[1])
use.append(m)
else:
use.append(self[1])
# Case arg2
if self.is_double_arithmetic() or self.is_set_if_less()
\
or self.is_logical()
\
or self.is_command(*['
addu
', '
subu
']):
use.append(self[2])
return use
...
...
tests/test_statement.py
View file @
47ddae61
...
...
@@ -93,3 +93,9 @@ class TestStatement(unittest.TestCase):
self
.
assertTrue
(
S
(
'command'
,
'addu'
,
'$1'
,
'$2'
,
'$3'
).
is_arith
())
self
.
assertFalse
(
S
(
'command'
,
'foo'
).
is_arith
())
self
.
assertFalse
(
S
(
'label'
,
'addu'
).
is_arith
())
# def test_get_def(self):
# self.assertEqual(S('command', 'addu', '$1', '$2', '$3'), '$1')
#
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment