Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
multitouch
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Taddeüs Kroes
multitouch
Commits
ed7b4732
Commit
ed7b4732
authored
12 years ago
by
Taddeüs Kroes
Browse files
Options
Downloads
Patches
Plain Diff
Changed thesis headers using chapters.
parent
65767536
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
docs/report.tex
+68
-78
68 additions, 78 deletions
docs/report.tex
with
68 additions
and
78 deletions
docs/report.tex
+
68
−
78
View file @
ed7b4732
...
...
@@ -93,85 +93,77 @@ To design such a mechanism properly, the following questions are relevant:
detection could swallow up more processing resources than desired.
\end{itemize}
\chapter
{
Related work
}
\chapter
{
Preliminary inquiries
}
\section
{
The TUIO protocol
}
The TUIO protocol
\cite
{
TUIO
}
defines a way to geometrically describe
tangible objects, such as fingers or fiducials on a multi-touch table. The
table used for this thesis uses the protocol in its driver. Object
information is sent to the TUIO UDP port (3333 by default).
For efficiency reasons, the TUIO protocol is encoded using the Open Sound
Control (OSC)
\footnote
{
\url
{
http://opensoundcontrol.org/specification
}}
format. An OSC server/client implementation is available for Python:
pyOSC
\footnote
{
\url
{
https://trac.v2.nl/wiki/pyOSC
}}
.
A Python implementation of the TUIO protocol also exists:
pyTUIO
\footnote
{
\url
{
http://code.google.com/p/pytuio/
}}
. However, the
execution of an example script yields an error regarding Python's built-in
\texttt
{
socket
}
library. Therefore, the reference implementation uses the
pyOSC package to receive TUIO messages.
The two most important message types of the protocol are ALIVE and SET
messages. An ALIVE message contains the list of session id's that are
currently ``active'', which in the case of multi-touch a table means that
they are touching the screen. A SET message provides geometric information
of a session id, such as position, velocity and acceleration.
Each session id represents an object. The only type of objects on the
multi-touch table are what the TUIO protocol calls ``2DCur'', which is a
(x, y) position on the screen.
ALIVE messages can be used to determine when an object touches and releases
the screen. For example, if a session id was in the previous message but
not in the current, The object it represents has been lifted from the
screen.
SET provide information about movement. In the case of simple (x, y)
positions, only the movement vector of the position itself can be
calculated. For more complex objects such as fiducials, arguments like
rotational position is also included.
TUIO coordinates range from
$
0
.
0
$
to
$
1
.
0
$
, with
$
(
0
.
0
,
0
.
0
)
$
being the
left top corner of the screen and
$
(
1
.
0
,
1
.
0
)
$
the right bottom corner. To
focus events within a window, a translation to window coordinates is
required in the client application, as stated by the online specification
\cite
{
TUIO
_
specification
}
:
\begin{quote}
In order to compute the X and Y coordinates for the 2D profiles a TUIO
tracker implementation needs to divide these values by the actual
sensor dimension, while a TUIO client implementation consequently can
scale these values back to the actual screen dimension.
\end{quote}
% TODO
\chapter
{
Method
s
}
\chapter
{
Experiment
s
}
% TODO
% testimplementatie met taps, rotatie en pinch. Hieruit bleek:
% - dat er verschillende manieren zijn om bijv. "rotatie" te
% detecteren, (en dat daartussen onderscheid moet kunnen worden
% gemaakt)
% - dat detectie van verschillende soorten gestures moet kunnen
% worden gescheiden, anders wordt het een chaos.
% - Er zijn een aantal keuzes gemaakt bij het ontwerpen van de gestures,
% bijv dat rotatie ALLE vingers gebruikt voor het centroid. Het is
% wellicht in een ander programma nodig om maar 1 hand te gebruiken, en
% dus punten dicht bij elkaar te kiezen (oplossing: windows).
% Tekenprogramma dat huidige points + centroid tekent en waarmee
% transformatie kan worden getest Link naar appendix "supported events"
\subsection
{
Preliminary inquiries
}
\subsubsection
{
The TUIO protocol
}
The TUIO protocol
\cite
{
TUIO
}
defines a way to geometrically describe
tangible objects, such as fingers or fiducials on a multi-touch table.
The table used for this thesis uses the protocol in its driver. Object
information is sent to the TUIO UDP port (3333 by default).
For efficiency reasons, the TUIO protocol is encoded using the Open
Sound Control
(OSC)
\footnote
{
\url
{
http://opensoundcontrol.org/specification
}}
format.
An OSC server/client implementation is available for Python:
pyOSC
\footnote
{
\url
{
https://trac.v2.nl/wiki/pyOSC
}}
.
A Python implementation of the TUIO protocol also exists:
pyTUIO
\footnote
{
\url
{
http://code.google.com/p/pytuio/
}}
. However, the
execution of an example script yields an error regarding Python's
built-in
\texttt
{
socket
}
library. Therefore, the reference
implementation uses the pyOSC package to receive TUIO messages.
The two most important message types of the protocol are ALIVE and SET
messages. An ALIVE message contains the list of session id's that are
currently ``active'', which in the case of multi-touch a table means
that they are touching the screen. A SET message provides geometric
information of a session id, such as position, velocity and acceleration.
Each session id represents an object. The only type of objects on the
multi-touch table are what the TUIO protocol calls ``2DCur'', which is
a (x, y) position on the screen.
ALIVE messages can be used to determine when an object touches and
releases the screen. For example, if a session id was in the previous
message but not in the current, The object it represents has been
lifted from the screen.
SET provide information about movement. In the case of simple (x, y)
positions, only the movement vector of the position itself can be
calculated. For more complex objects such as fiducials, arguments like
rotational position is also included.
TUIO coordinates range from
$
0
.
0
$
to
$
1
.
0
$
, with
$
(
0
.
0
,
0
.
0
)
$
being the
left top corner of the screen and
$
(
1
.
0
,
1
.
0
)
$
the right bottom corner.
To focus events within a window, a translation to window coordinates is
required in the client application, as stated by the online
specification
\cite
{
TUIO
_
specification
}
:
\begin{quote}
In order to compute the X and Y coordinates for the 2D profiles a
TUIO tracker implementation needs to divide these values by the
actual sensor dimension, while a TUIO client implementation
consequently can scale these values back to the actual screen
dimension.
\end{quote}
\subsection
{
Experiments
}
% testimplementatie met taps, rotatie en pinch. Hieruit bleek:
% - dat er verschillende manieren zijn om bijv. "rotatie" te
% detecteren, (en dat daartussen onderscheid moet kunnen worden
% gemaakt)
% - dat detectie van verschillende soorten gestures moet kunnen
% worden gescheiden, anders wordt het een chaos.
% - Er zijn een aantal keuzes gemaakt bij het ontwerpen van de gestures,
% bijv dat rotatie ALLE vingers gebruikt voor het centroid. Het is
% wellicht in een ander programma nodig om maar 1 hand te gebruiken, en
% dus punten dicht bij elkaar te kiezen (oplossing: windows).
% Tekenprogramma dat huidige points + centroid tekent en waarmee
% transformatie kan worden getest Link naar appendix "supported events"
% Proof of Concept: VTK interactor
% Proof of Concept: VTK interactor
% -------
% Results
...
...
@@ -219,19 +211,17 @@ To design such a mechanism properly, the following questions are relevant:
% TODO: Network protocol (ZeroMQ)
\chapter
{
References
}
\bibliography
{
report
}{}
\bibliographystyle
{
plain
}
\appendix
\
section
{
Schema of mechanism structure
}
\
chapter
{
Schema of mechanism structure
}
\label
{
app:schema
}
% TODO: "dia"
\
section
{
Supported events in reference implementation
}
\
chapter
{
Supported events in reference implementation
}
\label
{
app:supported-events
}
% TODO
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment