Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
L
licenseplates
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Taddeüs Kroes
licenseplates
Commits
e2507c65
Commit
e2507c65
authored
Dec 02, 2011
by
Taddeüs Kroes
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Implemented SVM classifier and added test file to test it.
parent
cce4f7e3
Changes
6
Show whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
145 additions
and
63 deletions
+145
-63
.gitignore
.gitignore
+11
-0
src/Character.py
src/Character.py
+6
-3
src/Classifier.py
src/Classifier.py
+17
-13
src/ClassifierTest.py
src/ClassifierTest.py
+65
-0
src/LicensePlate.py
src/LicensePlate.py
+39
-40
src/LocalBinaryPatternizer.py
src/LocalBinaryPatternizer.py
+7
-7
No files found.
.gitignore
View file @
e2507c65
...
@@ -7,3 +7,14 @@
...
@@ -7,3 +7,14 @@
*.synctex.gz
*.synctex.gz
*.toc
*.toc
*.out
*.out
*.jpg
images/BBB
images/Images
images/Infos
images/licenseplates
chars
learning_set
test_set
classifier
classifier-model
classifier-characters
src/Character.py
View file @
e2507c65
# TODO cleanup the getElements stuff
from
LocalBinaryPatternizer
import
LocalBinaryPatternizer
class
Character
:
class
Character
:
def
__init__
(
self
,
value
,
corners
,
image
):
def
__init__
(
self
,
value
,
corners
,
image
):
self
.
value
=
value
self
.
value
=
value
...
@@ -12,4 +13,6 @@ class Character:
...
@@ -12,4 +13,6 @@ class Character:
show
()
show
()
def
get_feature_vector
(
self
):
def
get_feature_vector
(
self
):
pass
pattern
=
LocalBinaryPatternizer
(
self
.
image
)
return
pattern
.
create_features_vector
()
src/Classifier.py
View file @
e2507c65
from
svmutil
import
svm_model
,
svm_problem
,
svm_parameter
,
svm_predict
,
LINEAR
from
svmutil
import
svm_train
,
svm_problem
,
svm_parameter
,
svm_predict
,
\
from
cPicle
import
dump
,
load
LINEAR
,
svm_save_model
,
svm_load_model
from
cPickle
import
dump
,
load
class
Classifier
:
class
Classifier
:
def
__init__
(
self
,
c
=
None
,
filename
=
None
):
def
__init__
(
self
,
c
=
None
,
filename
=
None
):
if
filename
:
if
filename
:
# If a filename is given, load a modl from the fiven filename
# If a filename is given, load a modl from the fiven filename
f
=
file
(
filename
,
'r'
)
self
.
model
=
svm_load_model
(
filename
+
'-model'
)
self
.
model
,
self
.
param
,
self
.
character_map
=
load
(
f
)
f
=
file
(
filename
+
'-characters'
,
'r'
)
self
.
character_map
=
load
(
f
)
f
.
close
()
f
.
close
()
else
:
else
:
self
.
param
=
svm_parameter
()
self
.
param
=
svm_parameter
()
...
@@ -18,8 +20,9 @@ class Classifier:
...
@@ -18,8 +20,9 @@ class Classifier:
def
save
(
self
,
filename
):
def
save
(
self
,
filename
):
"""Save the SVM model in the given filename."""
"""Save the SVM model in the given filename."""
f
=
file
(
filename
,
'w+'
)
svm_save_model
(
filename
+
'-model'
,
self
.
model
)
dump
((
self
.
model
,
self
.
param
,
self
.
character_map
),
f
)
f
=
file
(
filename
+
'-characters'
,
'w+'
)
dump
(
self
.
character_map
,
f
)
f
.
close
()
f
.
close
()
def
train
(
self
,
learning_set
):
def
train
(
self
,
learning_set
):
...
@@ -27,8 +30,11 @@ class Classifier:
...
@@ -27,8 +30,11 @@ class Classifier:
known values."""
known values."""
classes
=
[]
classes
=
[]
features
=
[]
features
=
[]
l
=
len
(
learning_set
)
for
char
in
learning_set
:
for
i
,
char
in
enumerate
(
learning_set
):
print
'Training "%s" -- %d of %d (%d%% done)'
\
%
(
char
.
value
,
i
+
1
,
l
,
int
(
100
*
(
i
+
1
)
/
l
))
# Map the character to an integer for use in the SVM model
# Map the character to an integer for use in the SVM model
if
char
.
value
not
in
self
.
character_map
:
if
char
.
value
not
in
self
.
character_map
:
self
.
character_map
[
char
.
value
]
=
len
(
self
.
character_map
)
self
.
character_map
[
char
.
value
]
=
len
(
self
.
character_map
)
...
@@ -36,15 +42,13 @@ class Classifier:
...
@@ -36,15 +42,13 @@ class Classifier:
classes
.
append
(
self
.
character_map
[
char
.
value
])
classes
.
append
(
self
.
character_map
[
char
.
value
])
features
.
append
(
char
.
get_feature_vector
())
features
.
append
(
char
.
get_feature_vector
())
problem
=
svm_problem
(
self
.
c
,
features
)
problem
=
svm_problem
(
classes
,
features
)
self
.
model
=
svm_model
(
problem
,
self
.
param
)
self
.
model
=
svm_train
(
problem
,
self
.
param
)
# Add prediction function that returns a numeric class prediction
self
.
model
.
predict
=
lambda
self
,
x
:
svm_predict
([
0
],
[
x
],
self
)[
0
][
0
]
def
classify
(
self
,
character
):
def
classify
(
self
,
character
):
"""Classify a character object and assign its value."""
"""Classify a character object and assign its value."""
prediction
=
self
.
model
.
predict
(
character
.
get_feature_vector
())
predict
=
lambda
x
:
svm_predict
([
0
],
[
x
],
self
.
model
)[
0
][
0
]
prediction
=
predict
(
character
.
get_feature_vector
())
for
value
,
svm_class
in
self
.
character_map
.
iteritems
():
for
value
,
svm_class
in
self
.
character_map
.
iteritems
():
if
svm_class
==
prediction
:
if
svm_class
==
prediction
:
...
...
src/ClassifierTest.py
0 → 100755
View file @
e2507c65
#!/usr/bin/python
from
LicensePlate
import
LicensePlate
from
Classifier
import
Classifier
from
cPickle
import
dump
,
load
#chars = []
#
#for i in range(9):
# for j in range(100):
# try:
# filename = '%04d/00991_%04d%02d.info' % (i, i, j)
# print 'loading file "%s"' % filename
# plate = LicensePlate(i, j)
#
# if hasattr(plate, 'characters'):
# chars.extend(plate.characters)
# except:
# print 'epic fail'
#
#print 'loaded %d chars' % len(chars)
#
#dump(chars, file('chars', 'w+'))
#----------------------------------------------------------------
#chars = load(file('chars', 'r'))
#learned = []
#learning_set = []
#test_set = []
#
#for char in chars:
# if learned.count(char.value) > 80:
# test_set.append(char)
# else:
# learning_set.append(char)
# learned.append(char.value)
#
#dump(learning_set, file('learning_set', 'w+'))
#dump(test_set, file('test_set', 'w+'))
#----------------------------------------------------------------
learning_set
=
load
(
file
(
'learning_set'
,
'r'
))
# Train the classifier with the learning set
classifier
=
Classifier
(
c
=
3
)
classifier
.
train
(
learning_set
)
#classifier.save('classifier')
#----------------------------------------------------------------
#classifier = Classifier(filename='classifier')
#test_set = load(file('test_set', 'r'))
#l = len(test_set)
#matches = 0
#
#for i, char in enumerate(test_set):
# prediction = classifier.classify(char)
#
# if char.value == prediction:
# print ':) ------> Successfully recognized "%s"' % char.value
# matches += 1
# else:
# print ':( Expected character "%s", got "%s"' \
# % (char.value, prediction),
#
# print ' -- %d of %d (%d%% done)' % (i + 1, l, int(100 * (i + 1) / l))
#
#print '\n%d matches (%d%%), %d fails' % (matches, \
# int(100 * matches / len(test_set)), \
# len(test_set) - matches)
src/LicensePlate.py
View file @
e2507c65
...
@@ -4,6 +4,7 @@ from Error import Error
...
@@ -4,6 +4,7 @@ from Error import Error
from
Point
import
Point
from
Point
import
Point
from
Character
import
Character
from
Character
import
Character
from
GrayscaleImage
import
GrayscaleImage
from
GrayscaleImage
import
GrayscaleImage
from
NormalizedCharacterImage
import
NormalizedCharacterImage
'''
'''
Creates a license plate object based on an XML file. The image should be
Creates a license plate object based on an XML file. The image should be
...
@@ -13,15 +14,13 @@ from GrayscaleImage import GrayscaleImage
...
@@ -13,15 +14,13 @@ from GrayscaleImage import GrayscaleImage
'''
'''
class
LicensePlate
:
class
LicensePlate
:
def
__init__
(
self
,
xml_title
):
def
__init__
(
self
,
folder_nr
,
file_nr
):
try
:
filename
=
'%04d/00991_%04d%02d'
%
(
folder_nr
,
folder_nr
,
file_nr
)
self
.
dom
=
parse
(
'../XML/'
+
str
(
xml_title
))
except
IOError
:
self
.
dom
=
parse
(
'../images/Infos/%s.info'
%
filename
)
Error
(
"Incorrect file name given."
)
else
:
properties
=
self
.
get_properties
()
properties
=
self
.
get_properties
()
self
.
image
=
GrayscaleImage
(
'../images/'
+
str
(
properties
[
'uii'
])
+
'.'
+
str
(
properties
[
'type'
])
)
self
.
image
=
GrayscaleImage
(
'../images/Images/%s.jpg'
%
filename
)
self
.
width
=
int
(
properties
[
'width'
])
self
.
width
=
int
(
properties
[
'width'
])
self
.
height
=
int
(
properties
[
'height'
])
self
.
height
=
int
(
properties
[
'height'
])
...
...
src/LocalBinaryPatternizer.py
View file @
e2507c65
...
@@ -45,4 +45,4 @@ class LocalBinaryPatternizer:
...
@@ -45,4 +45,4 @@ class LocalBinaryPatternizer:
return
(
y
/
self
.
cell_size
,
x
/
self
.
cell_size
)
return
(
y
/
self
.
cell_size
,
x
/
self
.
cell_size
)
def
get_features_as_array
(
self
):
def
get_features_as_array
(
self
):
return
[
item
for
sublist
in
self
.
features
for
item
in
sublist
]
return
[
h
.
bins
for
h
in
[
h
for
sub
in
self
.
features
for
h
in
sub
]][
0
]
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment