Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
L
licenseplates
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Taddeüs Kroes
licenseplates
Commits
e2507c65
Commit
e2507c65
authored
Dec 02, 2011
by
Taddeüs Kroes
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Implemented SVM classifier and added test file to test it.
parent
cce4f7e3
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
145 additions
and
63 deletions
+145
-63
.gitignore
.gitignore
+11
-0
src/Character.py
src/Character.py
+6
-3
src/Classifier.py
src/Classifier.py
+17
-13
src/ClassifierTest.py
src/ClassifierTest.py
+65
-0
src/LicensePlate.py
src/LicensePlate.py
+39
-40
src/LocalBinaryPatternizer.py
src/LocalBinaryPatternizer.py
+7
-7
No files found.
.gitignore
View file @
e2507c65
...
...
@@ -7,3 +7,14 @@
*.synctex.gz
*.toc
*.out
*.jpg
images/BBB
images/Images
images/Infos
images/licenseplates
chars
learning_set
test_set
classifier
classifier-model
classifier-characters
src/Character.py
View file @
e2507c65
# TODO cleanup the getElements stuff
from
LocalBinaryPatternizer
import
LocalBinaryPatternizer
class
Character
:
def
__init__
(
self
,
value
,
corners
,
image
):
self
.
value
=
value
self
.
corners
=
corners
self
.
image
=
image
# Testing purposes
def
show
(
self
):
from
pylab
import
imshow
,
show
...
...
@@ -12,4 +13,6 @@ class Character:
show
()
def
get_feature_vector
(
self
):
pass
pattern
=
LocalBinaryPatternizer
(
self
.
image
)
return
pattern
.
create_features_vector
()
src/Classifier.py
View file @
e2507c65
from
svmutil
import
svm_model
,
svm_problem
,
svm_parameter
,
svm_predict
,
LINEAR
from
cPicle
import
dump
,
load
from
svmutil
import
svm_train
,
svm_problem
,
svm_parameter
,
svm_predict
,
\
LINEAR
,
svm_save_model
,
svm_load_model
from
cPickle
import
dump
,
load
class
Classifier
:
def
__init__
(
self
,
c
=
None
,
filename
=
None
):
if
filename
:
# If a filename is given, load a modl from the fiven filename
f
=
file
(
filename
,
'r'
)
self
.
model
,
self
.
param
,
self
.
character_map
=
load
(
f
)
self
.
model
=
svm_load_model
(
filename
+
'-model'
)
f
=
file
(
filename
+
'-characters'
,
'r'
)
self
.
character_map
=
load
(
f
)
f
.
close
()
else
:
self
.
param
=
svm_parameter
()
...
...
@@ -18,8 +20,9 @@ class Classifier:
def
save
(
self
,
filename
):
"""Save the SVM model in the given filename."""
f
=
file
(
filename
,
'w+'
)
dump
((
self
.
model
,
self
.
param
,
self
.
character_map
),
f
)
svm_save_model
(
filename
+
'-model'
,
self
.
model
)
f
=
file
(
filename
+
'-characters'
,
'w+'
)
dump
(
self
.
character_map
,
f
)
f
.
close
()
def
train
(
self
,
learning_set
):
...
...
@@ -27,8 +30,11 @@ class Classifier:
known values."""
classes
=
[]
features
=
[]
l
=
len
(
learning_set
)
for
char
in
learning_set
:
for
i
,
char
in
enumerate
(
learning_set
):
print
'Training "%s" -- %d of %d (%d%% done)'
\
%
(
char
.
value
,
i
+
1
,
l
,
int
(
100
*
(
i
+
1
)
/
l
))
# Map the character to an integer for use in the SVM model
if
char
.
value
not
in
self
.
character_map
:
self
.
character_map
[
char
.
value
]
=
len
(
self
.
character_map
)
...
...
@@ -36,15 +42,13 @@ class Classifier:
classes
.
append
(
self
.
character_map
[
char
.
value
])
features
.
append
(
char
.
get_feature_vector
())
problem
=
svm_problem
(
self
.
c
,
features
)
self
.
model
=
svm_model
(
problem
,
self
.
param
)
# Add prediction function that returns a numeric class prediction
self
.
model
.
predict
=
lambda
self
,
x
:
svm_predict
([
0
],
[
x
],
self
)[
0
][
0
]
problem
=
svm_problem
(
classes
,
features
)
self
.
model
=
svm_train
(
problem
,
self
.
param
)
def
classify
(
self
,
character
):
"""Classify a character object and assign its value."""
prediction
=
self
.
model
.
predict
(
character
.
get_feature_vector
())
predict
=
lambda
x
:
svm_predict
([
0
],
[
x
],
self
.
model
)[
0
][
0
]
prediction
=
predict
(
character
.
get_feature_vector
())
for
value
,
svm_class
in
self
.
character_map
.
iteritems
():
if
svm_class
==
prediction
:
...
...
src/ClassifierTest.py
0 → 100755
View file @
e2507c65
#!/usr/bin/python
from
LicensePlate
import
LicensePlate
from
Classifier
import
Classifier
from
cPickle
import
dump
,
load
#chars = []
#
#for i in range(9):
# for j in range(100):
# try:
# filename = '%04d/00991_%04d%02d.info' % (i, i, j)
# print 'loading file "%s"' % filename
# plate = LicensePlate(i, j)
#
# if hasattr(plate, 'characters'):
# chars.extend(plate.characters)
# except:
# print 'epic fail'
#
#print 'loaded %d chars' % len(chars)
#
#dump(chars, file('chars', 'w+'))
#----------------------------------------------------------------
#chars = load(file('chars', 'r'))
#learned = []
#learning_set = []
#test_set = []
#
#for char in chars:
# if learned.count(char.value) > 80:
# test_set.append(char)
# else:
# learning_set.append(char)
# learned.append(char.value)
#
#dump(learning_set, file('learning_set', 'w+'))
#dump(test_set, file('test_set', 'w+'))
#----------------------------------------------------------------
learning_set
=
load
(
file
(
'learning_set'
,
'r'
))
# Train the classifier with the learning set
classifier
=
Classifier
(
c
=
3
)
classifier
.
train
(
learning_set
)
#classifier.save('classifier')
#----------------------------------------------------------------
#classifier = Classifier(filename='classifier')
#test_set = load(file('test_set', 'r'))
#l = len(test_set)
#matches = 0
#
#for i, char in enumerate(test_set):
# prediction = classifier.classify(char)
#
# if char.value == prediction:
# print ':) ------> Successfully recognized "%s"' % char.value
# matches += 1
# else:
# print ':( Expected character "%s", got "%s"' \
# % (char.value, prediction),
#
# print ' -- %d of %d (%d%% done)' % (i + 1, l, int(100 * (i + 1) / l))
#
#print '\n%d matches (%d%%), %d fails' % (matches, \
# int(100 * matches / len(test_set)), \
# len(test_set) - matches)
src/LicensePlate.py
View file @
e2507c65
from
pylab
import
array
,
zeros
,
inv
,
dot
,
svd
,
shape
,
floor
from
xml.dom.minidom
import
parse
from
xml.dom.minidom
import
parse
from
Error
import
Error
from
Point
import
Point
from
Character
import
Character
from
GrayscaleImage
import
GrayscaleImage
from
NormalizedCharacterImage
import
NormalizedCharacterImage
'''
Creates a license plate object based on an XML file. The image should be
placed in a folder 'images' the xml file in a folder 'xml'
TODO: perhaps remove non required XML lookups
TODO: perhaps remove non required XML lookups
'''
class
LicensePlate
:
def
__init__
(
self
,
xml_title
):
try
:
self
.
dom
=
parse
(
'../XML/'
+
str
(
xml_title
))
except
IOError
:
Error
(
"Incorrect file name given."
)
else
:
properties
=
self
.
get_properties
()
def
__init__
(
self
,
folder_nr
,
file_nr
):
filename
=
'%04d/00991_%04d%02d'
%
(
folder_nr
,
folder_nr
,
file_nr
)
self
.
dom
=
parse
(
'../images/Infos/%s.info'
%
filename
)
properties
=
self
.
get_properties
()
self
.
image
=
GrayscaleImage
(
'../images/Images/%s.jpg'
%
filename
)
self
.
width
=
int
(
properties
[
'width'
])
self
.
height
=
int
(
properties
[
'height'
])
self
.
image
=
GrayscaleImage
(
'../images/'
+
str
(
properties
[
'uii'
])
+
'.'
+
str
(
properties
[
'type'
]))
self
.
width
=
int
(
properties
[
'width'
])
self
.
height
=
int
(
properties
[
'height'
])
self
.
read_xml
()
self
.
read_xml
()
# sets the entire license plate of an image
def
retrieve_data
(
self
,
corners
):
def
retrieve_data
(
self
,
corners
):
x0
,
y0
=
corners
[
0
].
to_tuple
()
x1
,
y1
=
corners
[
1
].
to_tuple
()
x2
,
y2
=
corners
[
2
].
to_tuple
()
x3
,
y3
=
corners
[
3
].
to_tuple
()
M
=
max
(
x0
,
x1
,
x2
,
x3
)
-
min
(
x0
,
x1
,
x2
,
x3
)
N
=
max
(
y0
,
y1
,
y2
,
y3
)
-
min
(
y0
,
y1
,
y2
,
y3
)
matrix
=
array
([
[
x0
,
y0
,
1
,
0
,
0
,
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
x0
,
y0
,
1
,
0
,
0
,
0
],
...
...
@@ -44,10 +43,10 @@ class LicensePlate:
[
0
,
0
,
0
,
x1
,
y1
,
1
,
0
,
0
,
0
],
[
x2
,
y2
,
1
,
0
,
0
,
0
,
-
M
*
x2
,
-
M
*
y2
,
-
M
],
[
0
,
0
,
0
,
x2
,
y2
,
1
,
-
N
*
x2
,
-
N
*
y2
,
-
N
],
[
x3
,
y3
,
1
,
0
,
0
,
0
,
0
,
0
,
0
],
[
x3
,
y3
,
1
,
0
,
0
,
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
x3
,
y3
,
1
,
-
N
*
x3
,
-
N
*
y3
,
-
N
]
])
P
=
inv
(
self
.
get_transformation_matrix
(
matrix
))
data
=
array
([
zeros
(
M
,
float
)]
*
N
)
...
...
@@ -56,23 +55,23 @@ class LicensePlate:
or_coor
=
dot
(
P
,
([[
i
],[
j
],[
1
]]))
or_coor_h
=
or_coor
[
1
][
0
]
/
or_coor
[
2
][
0
],
or_coor
[
0
][
0
]
/
or_coor
[
2
][
0
]
data
[
j
][
i
]
=
self
.
pV
(
or_coor_h
[
0
],
or_coor_h
[
1
])
return
data
def
get_transformation_matrix
(
self
,
matrix
):
# Get the vector p and the values that are in there by taking the SVD.
# Get the vector p and the values that are in there by taking the SVD.
# Since D is diagonal with the eigenvalues sorted from large to small on
# the diagonal, the optimal q in min ||Dq|| is q = [[0]..[1]]. Therefore,
# the diagonal, the optimal q in min ||Dq|| is q = [[0]..[1]]. Therefore,
# p = Vq means p is the last column in V.
U
,
D
,
V
=
svd
(
matrix
)
p
=
V
[
8
][:]
return
array
([
[
p
[
0
],
p
[
1
],
p
[
2
]
],
[
p
[
3
],
p
[
4
],
p
[
5
]
],
[
p
[
0
],
p
[
1
],
p
[
2
]
],
[
p
[
3
],
p
[
4
],
p
[
5
]
],
[
p
[
6
],
p
[
7
],
p
[
8
]
]
])
def
pV
(
self
,
x
,
y
):
image
=
self
.
image
...
...
@@ -85,25 +84,25 @@ class LicensePlate:
y_low
=
floor
(
y
)
y_high
=
floor
(
y
+
1
)
x_y
=
(
x_high
-
x_low
)
*
(
y_high
-
y_low
)
a
=
x_high
-
x
b
=
y_high
-
y
c
=
x
-
x_low
d
=
y
-
y_low
return
image
[
x_low
,
y_low
]
/
x_y
*
a
*
b
\
+
image
[
x_high
,
y_low
]
/
x_y
*
c
*
b
\
+
image
[
x_low
,
y_high
]
/
x_y
*
a
*
d
\
+
image
[
x_high
,
y_high
]
/
x_y
*
c
*
d
return
0
# Testing purposes
def
show
(
self
):
from
pylab
import
imshow
,
show
imshow
(
self
.
data
,
cmap
=
"gray"
)
show
()
def
get_properties
(
self
):
children
=
self
.
get_children
(
"properties"
)
...
...
@@ -120,7 +119,7 @@ class LicensePlate:
# TODO : create function for location / characters as they do the same
def
read_xml
(
self
):
children
=
self
.
get_children
(
"plate"
)
# most recent version
for
child
in
children
:
if
child
.
nodeName
==
"regnum"
:
self
.
license_full
=
child
.
firstChild
.
data
...
...
@@ -130,7 +129,7 @@ class LicensePlate:
self
.
corners
=
self
.
get_corners
(
child
)
elif
child
.
nodeName
==
"characters"
:
nodes
=
child
.
childNodes
self
.
characters
=
[]
for
character
in
nodes
:
...
...
@@ -139,11 +138,11 @@ class LicensePlate:
corners
=
self
.
get_corners
(
character
)
data
=
self
.
retrieve_data
(
corners
)
image
=
NormalizedCharacterImage
(
data
=
data
)
self
.
characters
.
append
(
Character
(
value
,
corners
,
image
))
else
:
pass
def
get_node
(
self
,
node
,
dom
=
None
):
if
not
dom
:
dom
=
self
.
dom
...
...
@@ -152,14 +151,14 @@ class LicensePlate:
def
get_children
(
self
,
node
,
dom
=
None
):
return
self
.
get_node
(
node
,
dom
).
childNodes
def
get_corners
(
self
,
child
):
nodes
=
self
.
get_children
(
"quadrangle"
,
child
)
corners
=
[]
for
corner
in
nodes
:
if
corner
.
nodeName
==
"point"
:
corners
.
append
(
Point
(
corner
))
return
corners
src/LocalBinaryPatternizer.py
View file @
e2507c65
...
...
@@ -3,7 +3,7 @@ from numpy import zeros, byte
from
math
import
ceil
class
LocalBinaryPatternizer
:
def
__init__
(
self
,
image
,
cell_size
=
16
):
self
.
cell_size
=
cell_size
self
.
image
=
image
...
...
@@ -23,7 +23,7 @@ class LocalBinaryPatternizer:
at each neighbour starting at 7 in the top-left corner. This gives a
8-bit feature number of a pixel'''
for
y
,
x
,
value
in
self
.
image
:
pattern
=
(
self
.
is_pixel_darker
(
y
-
1
,
x
-
1
,
value
)
<<
7
)
\
|
(
self
.
is_pixel_darker
(
y
-
1
,
x
,
value
)
<<
6
)
\
|
(
self
.
is_pixel_darker
(
y
-
1
,
x
+
1
,
value
)
<<
5
)
\
...
...
@@ -32,17 +32,17 @@ class LocalBinaryPatternizer:
|
(
self
.
is_pixel_darker
(
y
+
1
,
x
,
value
)
<<
2
)
\
|
(
self
.
is_pixel_darker
(
y
+
1
,
x
-
1
,
value
)
<<
1
)
\
|
(
self
.
is_pixel_darker
(
y
,
x
-
1
,
value
)
<<
0
)
cy
,
cx
=
self
.
get_cell_index
(
y
,
x
)
self
.
features
[
cy
][
cx
].
add
(
pattern
)
return
self
.
get_features_as_array
()
def
is_pixel_darker
(
self
,
y
,
x
,
value
):
return
self
.
image
.
in_bounds
(
y
,
x
)
and
self
.
image
[
y
,
x
]
>
value
def
get_cell_index
(
self
,
y
,
x
):
return
(
y
/
self
.
cell_size
,
x
/
self
.
cell_size
)
def
get_features_as_array
(
self
):
return
[
item
for
sublist
in
self
.
features
for
item
in
sublist
]
\ No newline at end of file
return
[
h
.
bins
for
h
in
[
h
for
sub
in
self
.
features
for
h
in
sub
]][
0
]
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment