Commit 6103bbdd authored by unknown's avatar unknown

Merge branch 'master' of https://github.com/taddeus/licenseplates

parents c55b28ee 76fe905f
...@@ -11,7 +11,7 @@ class Character: ...@@ -11,7 +11,7 @@ class Character:
def set_corners(self): def set_corners(self):
corners = self.get_children("quadrangle") corners = self.get_children("quadrangle")
self.corners = [] self.corners = []
for corner in corners: for corner in corners:
...@@ -25,4 +25,7 @@ class Character: ...@@ -25,4 +25,7 @@ class Character:
return dom.getElementsByTagName(node)[0] return dom.getElementsByTagName(node)[0]
def get_children(self, node, dom=None): def get_children(self, node, dom=None):
return self.get_node(node, dom).childNodes return self.get_node(node, dom).childNodes
\ No newline at end of file
def get_feature_vector(self):
pass
from svmutil import svm_model, svm_problem, svm_parameter, svm_predict, LINEAR
from cPicle import dump, load
class Classifier:
def __init__(self, c=None, filename=None):
if filename:
# If a filename is given, load a modl from the fiven filename
f = file(filename, 'r')
self.model, self.param, self.character_map = load(f)
f.close()
else:
self.param = svm_parameter()
self.param.kernel_type = LINEAR
self.param.C = c
self.character_map = {}
self.model = None
def save(self, filename):
"""Save the SVM model in the given filename."""
f = file(filename, 'w+')
dump((self.model, self.param, self.character_map), f)
f.close()
def train(self, learning_set):
"""Train the classifier with a list of character objects that have
known values."""
classes = []
features = []
for char in learning_set:
# Map the character to an integer for use in the SVM model
if char.value not in self.character_map:
self.character_map[char.value] = len(self.character_map)
classes.append(self.character_map[char.value])
features.append(char.get_feature_vector())
problem = svm_problem(self.c, features)
self.model = svm_model(problem, self.param)
# Add prediction function that returns a numeric class prediction
self.model.predict = lambda self, x: svm_predict([0], [x], self)[0][0]
def classify(self, character):
"""Classify a character object and assign its value."""
prediction = self.model.predict(character.get_feature_vector())
for value, svm_class in self.character_map.iteritems():
if svm_class == prediction:
return value
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment