Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
L
licenseplates
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Taddeüs Kroes
licenseplates
Commits
24b7b1d7
Commit
24b7b1d7
authored
Dec 05, 2011
by
Jayke Meijer
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'master' of github.com:taddeus/licenseplates
parents
ccfd5c3b
9749ba2d
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
14 additions
and
26 deletions
+14
-26
src/Classifier.py
src/Classifier.py
+9
-23
src/ClassifierTest.py
src/ClassifierTest.py
+5
-3
No files found.
src/Classifier.py
View file @
24b7b1d7
from
svmutil
import
svm_train
,
svm_problem
,
svm_parameter
,
svm_predict
,
\
svm_save_model
,
svm_load_model
from
cPickle
import
dump
,
load
class
Classifier
:
def
__init__
(
self
,
c
=
None
,
filename
=
None
):
if
filename
:
# If a filename is given, load a modl from the fiven filename
self
.
model
=
svm_load_model
(
filename
+
'-model'
)
f
=
file
(
filename
+
'-characters'
,
'r'
)
self
.
character_map
=
load
(
f
)
f
.
close
()
# If a filename is given, load a model from the given filename
self
.
model
=
svm_load_model
(
filename
)
else
:
self
.
param
=
svm_parameter
()
self
.
param
.
kernel_type
=
2
self
.
param
.
kernel_type
=
2
# Radial kernel type
self
.
param
.
C
=
c
self
.
character_map
=
{}
self
.
model
=
None
def
save
(
self
,
filename
):
"""Save the SVM model in the given filename."""
svm_save_model
(
filename
+
'-model'
,
self
.
model
)
f
=
file
(
filename
+
'-characters'
,
'w+'
)
dump
(
self
.
character_map
,
f
)
f
.
close
()
svm_save_model
(
filename
,
self
.
model
)
def
train
(
self
,
learning_set
):
"""Train the classifier with a list of character objects that have
...
...
@@ -34,22 +26,16 @@ class Classifier:
for
i
,
char
in
enumerate
(
learning_set
):
print
'Training "%s" -- %d of %d (%d%% done)'
\
%
(
char
.
value
,
i
+
1
,
l
,
int
(
100
*
(
i
+
1
)
/
l
))
# Map the character to an integer for use in the SVM model
if
char
.
value
not
in
self
.
character_map
:
self
.
character_map
[
char
.
value
]
=
len
(
self
.
character_map
)
classes
.
append
(
self
.
character_map
[
char
.
value
])
%
(
char
.
value
,
i
+
1
,
l
,
int
(
100
*
(
i
+
1
)
/
l
))
classes
.
append
(
float
(
ord
(
char
.
value
)))
features
.
append
(
char
.
get_feature_vector
())
problem
=
svm_problem
(
classes
,
features
)
self
.
model
=
svm_train
(
problem
,
self
.
param
)
def
classify
(
self
,
character
):
"""Classify a character object
and assig
n its value."""
"""Classify a character object
, retur
n its value."""
predict
=
lambda
x
:
svm_predict
([
0
],
[
x
],
self
.
model
)[
0
][
0
]
prediction
=
predict
(
character
.
get_feature_vector
())
prediction
_class
=
predict
(
character
.
get_feature_vector
())
for
value
,
svm_class
in
self
.
character_map
.
iteritems
():
if
svm_class
==
prediction
:
return
value
return
chr
(
int
(
prediction_class
))
src/ClassifierTest.py
View file @
24b7b1d7
...
...
@@ -21,18 +21,20 @@ print 'loaded %d chars' % len(chars)
dump
(
chars
,
file
(
'chars'
,
'w+'
))
#----------------------------------------------------------------
chars
=
load
(
file
(
'chars'
,
'r'
))
chars
=
load
(
file
(
'chars'
,
'r'
))
[:
500
]
learned
=
[]
learning_set
=
[]
test_set
=
[]
for
char
in
chars
:
if
learned
.
count
(
char
.
value
)
>
80
:
if
learned
.
count
(
char
.
value
)
>
12
:
test_set
.
append
(
char
)
else
:
learning_set
.
append
(
char
)
learned
.
append
(
char
.
value
)
#print 'Learning set:', [c.value for c in learning_set]
#print 'Test set:', [c.value for c in test_set]
dump
(
learning_set
,
file
(
'learning_set'
,
'w+'
))
dump
(
test_set
,
file
(
'test_set'
,
'w+'
))
#----------------------------------------------------------------
...
...
@@ -52,7 +54,7 @@ for i, char in enumerate(test_set):
prediction
=
classifier
.
classify
(
char
)
if
char
.
value
==
prediction
:
print
':
) -
-----> Successfully recognized "%s"'
%
char
.
value
,
print
':-----> Successfully recognized "%s"'
%
char
.
value
,
matches
+=
1
else
:
print
':( Expected character "%s", got "%s"'
\
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment