Commit 1a203e67 authored by Taddeus Kroes's avatar Taddeus Kroes

Merged test scripts into a single test file: find_svm_parameter.py.

parent 7a67ea01
#!/usr/bin/python #!/usr/bin/python
from os import listdir from os import listdir
from cPickle import dump from cPickle import dump
from pylab import imshow, show from sys import argv, exit
from GrayscaleImage import GrayscaleImage from GrayscaleImage import GrayscaleImage
from NormalizedCharacterImage import NormalizedCharacterImage from NormalizedCharacterImage import NormalizedCharacterImage
from Character import Character from Character import Character
if len(argv) < 4:
print 'Usage: python %s FILE_SUFFIX BLUR_SCALE NEIGHBOURS' % argv[0]
exit(1)
c = [] c = []
for char in sorted(listdir('../images/LearningSet')): for char in sorted(listdir('../images/LearningSet')):
for image in sorted(listdir('../images/LearningSet/' + char)): for image in sorted(listdir('../images/LearningSet/' + char)):
f = '../images/LearningSet/' + char + '/' + image f = '../images/LearningSet/' + char + '/' + image
image = GrayscaleImage(f) image = GrayscaleImage(f)
norm = NormalizedCharacterImage(image, blur=1, size=(48, 36)) norm = NormalizedCharacterImage(image, blur=float(argv[2]), height=42)
#imshow(norm.data, cmap='gray') #from pylab import imshow, show
#show() #imshow(norm.data, cmap='gray'); show()
character = Character(char, [], norm) character = Character(char, [], norm)
character.get_single_cell_feature_vector() character.get_single_cell_feature_vector(int(argv[3]))
c.append(character) c.append(character)
print char print char
dump(c, open('characters.dat', 'w+')) print 'Saving characters...'
dump(c, open('characters%s.dat' % argv[1], 'w+'))
#!/usr/bin/python
from cPickle import dump, load
from sys import argv, exit
if len(argv) < 2:
print 'Usage: python %s FILE_SUFFIX' % argv[0]
exit(1)
print 'Loading characters...'
chars = load(file('characters%s.dat' % argv[1], 'r'))
learning_set = []
test_set = []
#s = {}
#
#for char in chars:
# if char.value not in s:
# s[char.value] = [char]
# else:
# s[char.value].append(char)
#
#for value, chars in s.iteritems():
# learning_set += chars[::2]
# test_set += chars[1::2]
learned = []
for char in chars:
if learned.count(char.value) == 70:
test_set.append(char)
else:
learning_set.append(char)
learned.append(char.value)
print 'Learning set:', [c.value for c in learning_set]
print '\nTest set:', [c.value for c in test_set]
print '\nSaving learning set...'
dump(learning_set, file('learning_set%s.dat' % argv[1], 'w+'))
print 'Saving test set...'
dump(test_set, file('test_set%s.dat' % argv[1], 'w+'))
#!/usr/bin/python #!/usr/bin/python
from xml_helper_functions import xml_to_LicensePlate
from Classifier import Classifier
from cPickle import dump, load from cPickle import dump, load
chars = load(file('characters.dat', 'r')) from Classifier import Classifier
learning_set = []
test_set = []
#s = {}
#
#for char in chars:
# if char.value not in s:
# s[char.value] = [char]
# else:
# s[char.value].append(char)
#
#for value, chars in s.iteritems():
# learning_set += chars[::2]
# test_set += chars[1::2]
learned = []
for char in chars: if len(argv) < 5:
if learned.count(char.value) == 70: print 'Usage: python %s FILE_SUFFIX C GAMMA NEIGHBOURS' % argv[0]
test_set.append(char) exit(1)
else:
learning_set.append(char)
learned.append(char.value)
print 'Learning set:', [c.value for c in learning_set]
print 'Test set:', [c.value for c in test_set]
print 'Saving learning set...'
dump(learning_set, file('learning_set.dat', 'w+'))
print 'Saving test set...'
dump(test_set, file('test_set.dat', 'w+'))
#----------------------------------------------------------------
print 'Loading learning set' print 'Loading learning set'
learning_set = load(file('learning_set.dat', 'r')) learning_set = load(file('learning_set%s.dat' % argv[1], 'r'))
# Train the classifier with the learning set # Train the classifier with the learning set
classifier = Classifier(c=512, gamma=.125, cell_size=12) classifier = Classifier(c=float(argv[1]), \
gamma=float(argv[2]), \
neighbours=int(argv[3]))
classifier.train(learning_set) classifier.train(learning_set)
classifier.save('classifier.dat')
print 'Saved classifier'
#----------------------------------------------------------------
print 'Loading classifier'
classifier = Classifier(filename='classifier.dat')
print 'Loading test set' print 'Loading test set'
test_set = load(file('test_set.dat', 'r')) test_set = load(file('test_set%s.dat' % argv[1], 'r'))
l = len(test_set) l = len(test_set)
matches = 0 matches = 0
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment