Commit 0dcaa652 authored by Richard Torenvliet's avatar Richard Torenvliet

Merge branch 'master' of github.com:taddeus/licenseplates

Conflicts:
	docs/report.tex
parents 16018f03 6043646c
docs/codediagram.png

133 KB | W: | H:

docs/codediagram.png

113 KB | W: | H:

docs/codediagram.png
docs/codediagram.png
docs/codediagram.png
docs/codediagram.png
  • 2-up
  • Swipe
  • Onion skin
No preview for this file type
This diff is collapsed.
This diff is collapsed.
......@@ -8,6 +8,8 @@ class Character:
self.filename = filename
def get_single_cell_feature_vector(self, neighbours=5):
"""Get the histogram of Local Binary Patterns over this entire
image."""
if hasattr(self, 'feature'):
return
......@@ -15,6 +17,7 @@ class Character:
self.feature = pattern.single_cell_features_vector()
def get_feature_vector(self, cell_size=None):
"""Get the concatenated histograms of Local Binary Patterns. """
pattern = LBP(self.image) if cell_size == None \
else LBP(self.image, cell_size)
......
from svmutil import svm_train, svm_problem, svm_parameter, svm_predict, \
svm_save_model, svm_load_model, RBF
class Classifier:
def __init__(self, c=None, gamma=None, filename=None, neighbours=3, \
verbose=0):
self.neighbours = neighbours
if filename:
# If a filename is given, load a model from the given filename
self.model = svm_load_model(filename)
......@@ -19,6 +16,7 @@ class Classifier:
self.param.gamma = gamma # Parameter for radial kernel
self.model = None
self.neighbours = neighbours
self.verbose = verbose
def save(self, filename):
......
......@@ -22,20 +22,6 @@ class GrayscaleImage:
for x in xrange(self.data.shape[1]):
yield y, x, self.data[y, x]
#self.__i_x = -1
#self.__i_y = 0
#return self
#def next(self):
# self.__i_x += 1
# if self.__i_x == self.width:
# self.__i_x = 0
# self.__i_y += 1
# if self.__i_y == self.height:
# raise StopIteration
# return self.__i_y, self.__i_x, self[self.__i_y, self.__i_x]
def __getitem__(self, position):
return self.data[position]
......
......@@ -6,13 +6,9 @@ class Histogram:
self.max = max
def add(self, number):
#bin_index = self.get_bin_index(number)
#self.bins[bin_index] += 1
self.bins[number] += 1
def remove(self, number):
#bin_index = self.get_bin_index(number)
#self.bins[bin_index] -= 1
self.bins[number] -= 1
def get_bin_index(self, number):
......
......@@ -13,14 +13,16 @@ class NormalizedCharacterImage(GrayscaleImage):
self.blur = blur
self.gaussian_filter()
self.increase_contrast()
#self.increase_contrast()
self.height = height
self.resize()
def increase_contrast(self):
self.data -= self.data.min()
self.data = self.data.astype(float) / self.data.max()
# def increase_contrast(self):
# """Increase the contrast by performing a grayscale mapping from the
# current maximum and minimum to a range between 0 and 1."""
# self.data -= self.data.min()
# self.data = self.data.astype(float) / self.data.max()
def gaussian_filter(self):
GaussianFilter(self.blur).filter(self)
......
......@@ -80,6 +80,7 @@ def load_test_set(neighbours, blur_scale, verbose=0):
def generate_sets(neighbours, blur_scale, verbose=0):
"""Split the entire dataset into a trainingset and a testset."""
suffix = '_%s_%s' % (blur_scale, neighbours)
learning_set_file = 'learning_set%s.dat' % suffix
test_set_file = 'test_set%s.dat' % suffix
......
......@@ -12,8 +12,8 @@ def load_classifier(neighbours, blur_scale, c=None, gamma=None, verbose=0):
if verbose:
print 'Loading classifier...'
classifier = Classifier(filename=classifier_file, verbose=verbose)
classifier.neighbours = neighbours
classifier = Classifier(filename=classifier_file, \
neighbours=neighbours, verbose=verbose)
elif c != None and gamma != None:
if verbose:
print 'Training new classifier...'
......
from os import mkdir
from os.path import exists
from pylab import array, zeros, inv, dot, svd, floor
from pylab import imsave, array, zeros, inv, dot, norm, svd, floor
from xml.dom.minidom import parse
from Point import Point
from Character import Character
from GrayscaleImage import GrayscaleImage
from NormalizedCharacterImage import NormalizedCharacterImage
from LicensePlate import LicensePlate
# sets the entire license plate of an image
def retrieve_data(image, corners):
x0, y0 = corners[0].to_tuple()
x1, y1 = corners[1].to_tuple()
x2, y2 = corners[2].to_tuple()
x3, y3 = corners[3].to_tuple()
# Gets the character data from a picture with a license plate
def retrieve_data(plate, corners):
x0,y0, x1,y1, x2,y2, x3,y3 = corners
M = int(1.2 * (max(x0, x1, x2, x3) - min(x0, x1, x2, x3)))
M = max(x0, x1, x2, x3) - min(x0, x1, x2, x3)
N = max(y0, y1, y2, y3) - min(y0, y1, y2, y3)
matrix = array([
......@@ -29,7 +25,7 @@ def retrieve_data(image, corners):
[ 0, 0, 0, x3, y3, 1, -N * x3, -N * y3, -N]
])
P = inv(get_transformation_matrix(matrix))
P = get_transformation_matrix(matrix)
data = array([zeros(M, float)] * N)
for i in range(M):
......@@ -38,7 +34,7 @@ def retrieve_data(image, corners):
or_coor_h = (or_coor[1][0] / or_coor[2][0],
or_coor[0][0] / or_coor[2][0])
data[j][i] = pV(image, or_coor_h[0], or_coor_h[1])
data[j][i] = pV(plate, or_coor_h[0], or_coor_h[1])
return data
......@@ -50,108 +46,92 @@ def get_transformation_matrix(matrix):
U, D, V = svd(matrix)
p = V[8][:]
return array([
[ p[0], p[1], p[2] ],
[ p[3], p[4], p[5] ],
[ p[6], p[7], p[8] ]
])
return inv(array([[p[0],p[1],p[2]], [p[3],p[4],p[5]], [p[6],p[7],p[8]]]))
def pV(image, x, y):
#Get the value of a point (interpolated x, y) in the given image
if image.in_bounds(x, y):
x_low = floor(x)
x_high = floor(x + 1)
y_low = floor(y)
y_high = floor(y + 1)
x_y = (x_high - x_low) * (y_high - y_low)
if not image.in_bounds(x, y):
return 0
a = x_high - x
b = y_high - y
c = x - x_low
d = y - y_low
x_low, x_high = floor(x), floor(x+1)
y_low, y_high = floor(y), floor(y+1)
x_y = (x_high - x_low) * (y_high - y_low)
return image[x_low, y_low] / x_y * a * b \
+ image[x_high, y_low] / x_y * c * b \
+ image[x_low , y_high] / x_y * a * d \
+ image[x_high, y_high] / x_y * c * d
a = x_high - x
b = y_high - y
c = x - x_low
d = y - y_low
return 0
return image[x_low, y_low] / x_y * a * b \
+ image[x_high, y_low] / x_y * c * b \
+ image[x_low , y_high] / x_y * a * d \
+ image[x_high, y_high] / x_y * c * d
def xml_to_LicensePlate(filename, save_character=None):
image = GrayscaleImage('../images/Images/%s.jpg' % filename)
dom = parse('../images/Infos/%s.info' % filename)
result_characters = []
version = dom.getElementsByTagName("current-version")[0].firstChild.data
info = dom.getElementsByTagName("info")
plate = GrayscaleImage('../images/Images/%s.jpg' % filename)
dom = parse('../images/Infos/%s.info' % filename)
country = ''
result = []
version = get_node(dom, "current-version")
infos = by_tag(dom, "info")
for i in info:
if version == i.getElementsByTagName("version")[0].firstChild.data:
for info in infos:
if not version == get_node(info, "version"):
continue
country = i.getElementsByTagName("identification-letters")[0].firstChild.data
temp = i.getElementsByTagName("characters")
country = get_node(info, "identification-letters")
temp = by_tag(info, "characters")
if len(temp):
characters = temp[0].childNodes
else:
characters = []
break
if not temp: # no characters where found in the file
break
for i, character in enumerate(characters):
if character.nodeName == "character":
value = character.getElementsByTagName("char")[0].firstChild.data
corners = get_corners(character)
characters = temp[0].childNodes
if not len(corners) == 4:
break
for i, char in enumerate(characters):
if not char.nodeName == "character":
continue
character_data = retrieve_data(image, corners)
character_image = NormalizedCharacterImage(data=character_data)
value = get_node(char, "char")
corners = get_corners(char)
result_characters.append(Character(value, corners, character_image, filename))
if not len(corners) == 8:
break
if save_character:
single_character = GrayscaleImage(data=character_data)
data = retrieve_data(plate, corners)
image = NormalizedCharacterImage(data=data)
result.append(Character(value, corners, image, filename))
if save_character:
character_image = GrayscaleImage(data=data)
path = "../images/LearningSet/%s" % value
image_path = "%s/%d_%s.jpg" % (path, i, filename.split('/')[-1])
path = "../images/LearningSet/%s" % value
image_path = "%s/%d_%s.jpg" % (path, i, filename.split('/')[-1])
if not exists(path):
mkdir(path)
if not exists(path):
mkdir(path)
if not exists(image_path):
character_image.save(image_path)
if not exists(image_path):
single_character.save(image_path)
return LicensePlate(country, result)
return LicensePlate(country, result_characters)
def get_corners(dom):
nodes = dom.getElementsByTagName("point")
corners = []
def get_node(node, tag):
return by_tag(node, tag)[0].firstChild.data
margin_y = 3
margin_x = 2
def by_tag(node, tag):
return node.getElementsByTagName(tag)
corners.append(
Point(get_coord(nodes[0], "x") - margin_x,
get_coord(nodes[0], "y") - margin_y)
)
def get_attr(node, attr):
return int(node.getAttribute(attr))
corners.append(
Point(get_coord(nodes[1], "x") + margin_x,
get_coord(nodes[1], "y") - margin_y)
)
corners.append(
Point(get_coord(nodes[2], "x") + margin_x,
get_coord(nodes[2], "y") + margin_y)
)
corners.append(
Point(get_coord(nodes[3], "x") - margin_x,
get_coord(nodes[3], "y") + margin_y)
)
def get_corners(dom):
p = by_tag(dom, "point")
return corners
# Extra padding
y = 3
x = 2
def get_coord(node, attribute):
return int(node.getAttribute(attribute))
# return 8 values (x0,y0, .., x3,y3)
return get_attr(p[0], "x") - x, get_attr(p[0], "y") - y,\
get_attr(p[1], "x") + x, get_attr(p[1], "y") - y,\
get_attr(p[2], "x") + x, get_attr(p[2], "y") + y,\
get_attr(p[3], "x") - x, get_attr(p[3], "y") + y
\ No newline at end of file
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment