Commit 0a4ff955 authored by Taddeus Kroes's avatar Taddeus Kroes

Added image normalization to performance measuring script.

parent 1d2ae333
#!/usr/bin/python #!/usr/bin/python
from os import listdir
from cPickle import load from cPickle import load
from sys import argv, exit from sys import argv, exit
from time import time from time import time
from GrayscaleImage import GrayscaleImage
from NormalizedCharacterImage import NormalizedCharacterImage
from Character import Character
from Classifier import Classifier from Classifier import Classifier
if len(argv) < 4: if len(argv) < 4:
...@@ -14,17 +18,37 @@ blur_scale = float(argv[2]) ...@@ -14,17 +18,37 @@ blur_scale = float(argv[2])
count = int(argv[3]) count = int(argv[3])
suffix = '_%s_%s' % (blur_scale, neighbours) suffix = '_%s_%s' % (blur_scale, neighbours)
chars_file = 'characters%s.dat' % suffix #chars_file = 'characters%s.dat' % suffix
classifier_file = 'classifier%s.dat' % suffix classifier_file = 'classifier%s.dat' % suffix
print 'Loading characters...' #print 'Loading characters...'
chars = load(open(chars_file, 'r'))[:count] #chars = load(open(chars_file, 'r'))[:count]
count = len(chars) #count = len(chars)
#
#for char in chars:
# del char.feature
#
#print 'Read %d characters' % count
for char in chars: print 'Loading %d characters...' % count
del char.feature chars = []
i = 0
br = False
for value in sorted(listdir('../images/LearningSet')):
for image in sorted(listdir('../images/LearningSet/' + value)):
f = '../images/LearningSet/' + value + '/' + image
image = GrayscaleImage(f)
char = Character(value, [], image)
chars.append(char)
i += 1
if i == count:
br = True
break
print 'Read %d characters' % count if br:
break
print 'Loading classifier...' print 'Loading classifier...'
classifier = Classifier(filename=classifier_file) classifier = Classifier(filename=classifier_file)
...@@ -33,6 +57,8 @@ classifier.neighbours = neighbours ...@@ -33,6 +57,8 @@ classifier.neighbours = neighbours
start = time() start = time()
for char in chars: for char in chars:
char.image = NormalizedCharacterImage(image, blur=blur_scale, height=42)
char.get_single_cell_feature_vector(neighbours)
classifier.classify(char) classifier.classify(char)
elapsed = time() - start elapsed = time() - start
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment