Skip to content
Snippets Groups Projects
Commit ba216925 authored by Richard Torenvliet's avatar Richard Torenvliet
Browse files

Made the scaling operations transparent by means of abstraction

parent c4418b4f
No related branches found
No related tags found
No related merge requests found
......@@ -11,9 +11,9 @@ all: $(TARGETS)
include actions.mk
data: data/imm_face_db
utils: generate_head_texture.so
utils: texture.so
generate_head_texture.so: src/utils/generate_head_texture.pyx
texture.so: src/utils/texture.pyx
(cd src/utils; python setup.py build_ext --inplace)
......
......@@ -5,7 +5,7 @@ import cv2
# local imports
import pca
from utils.generate_head_texture import fill_triangle, get_row_colors_triangle
import utils.texture as tx
import utils.triangles as tu
logging.basicConfig(level=logging.INFO,
......@@ -13,6 +13,56 @@ logging.basicConfig(level=logging.INFO,
logger = logging.getLogger(__name__)
class AAMPoints():
"""
Object to store AAM points / landmarks. Tries to keep the scaling of
the shape parameters transparent.
"""
def __init__(self, normalized_flattened_points_list=None, points_list=None, actual_shape=()):
self.normalized_flattened_points_list = normalized_flattened_points_list
self.points_list = points_list
self.actual_shape = actual_shape
self.bounding_box = None
def get_bounding_box(self):
if self.bounding_box is None:
return self.calculate_bounding_box()
return self.bounding_box
def get_scaled_points(self, shape, rescale=True):
if self.points_list is None:
self.points_list = self.normalized_flattened_points_list
if len(self.actual_shape):
self.points_list = self.points_list.reshape(self.actual_shape)
h = shape[0]
w = shape[1]
self.points_list[:, 0] = self.points_list[:, 0] * w
self.points_list[:, 1] = self.points_list[:, 1] * h
return self.points_list
def calculate_bounding_box(self):
"""
Calculate bounding box in the **scaled** points list
The empasis on on scaled because the convexHull does not support
small values, the normalized_flattened_points_list does not work.
"""
assert self.points_list is not None, \
'the list points already need to be scaled order to correctly work'
hull = cv2.convexHull(self.points_list, returnPoints=True)
return cv2.boundingRect(hull)
def get_bounding_box_2(self):
pass
#hull = cv2.convexHull(self.points_list, returnPoints=True)
#x, y, w_slice, h_slice = cv2.boundingRect(hull)
#return cv2.boundingRect()
def get_mean(vector):
""" construct a mean from a matrix of x,y values
Args:
......@@ -80,19 +130,12 @@ def sample_from_triangles(src, points2d_src, points2d_dst, triangles, dst):
points2d_dst(ndarray, dtype=np.int32): shape array [[x, y], ... [x, y]]
triangles(ndarray, ndim=3, dtype=np.int32): shape array [[p1, p2, p3]_0, .. [p1, p2, p3]_n].
returns:
ndarray(dtype=uint8): flattened array of bounding boxes around the
given triangles(in order).
"""
triangles_pixels = []
for tri in triangles:
src_p1, src_p2, src_p3 = points2d_src[tri]
dst_p1, dst_p2, dst_p3 = points2d_dst[tri]
get_row_colors_triangle(
tx.fill_triangle_src_dst(
src, dst,
src_p1[0], src_p1[1],
src_p2[0], src_p2[1],
......@@ -102,41 +145,38 @@ def sample_from_triangles(src, points2d_src, points2d_dst, triangles, dst):
dst_p3[0], dst_p3[1]
)
#triangles_pixels.extend(dst.flatten())
#return np.asarray(triangles_pixels, dtype=np.uint8)
def build_texture_feature_vectors(files, get_image_with_shape, mean_shape, triangles):
def build_texture_feature_vectors(files, get_image_with_points, MeanPoints, triangles):
"""
Args:
files (list): list files
flattened (bool): Flatten the inner feature vectors, see
flatten_feature_vectors.
MeanPoints(AAMPoints): AAMPoints object
Returns:
list: list of feature vectors
"""
mean_texture = []
mean_shape_scaled = mean_shape.reshape((58, 2))
mean_shape_scaled[:, 0] = mean_shape_scaled[:, 0] * 640
mean_shape_scaled[:, 1] = mean_shape_scaled[:, 1] * 480
hull = cv2.convexHull(mean_shape_scaled, returnPoints=True)
x, y, w_slice, h_slice = cv2.boundingRect(hull)
x, y, w_slice, h_slice = MeanPoints.get_bounding_box()
for i, f in enumerate(files):
image, shape = get_image_with_shape(f)
h, w, c = image.shape
image, points = get_image_with_points(f)
shape[:, 0] = shape[:, 0] * w
shape[:, 1] = shape[:, 1] * h
Points = AAMPoints(
normalized_flattened_points_list=points,
actual_shape=(58, 2)
)
dst = np.full((h, w, 3), fill_value=0, dtype=np.uint8)
# empty colored image
dst = np.full((image.shape[0], image.shape[1], 3), fill_value=0, dtype=np.uint8)
triangles_colors = sample_from_triangles(
image, shape, mean_shape_scaled, triangles, dst
sample_from_triangles(
image,
Points.get_scaled_points(image.shape),
MeanPoints(image.shape),
triangles,
dst
)
dst_flattened = dst[y: y + h_slice, x: x + w_slice].flatten()
......
......@@ -2,10 +2,11 @@ import numpy as np
import cv2
import pytest
import imm_points
import aam
import pca
import imm_points as imm
from utils import triangles as tri
def test_build_mean_aan():
imm_points = np.array([
......@@ -45,10 +46,39 @@ def test_zero_mean_aan():
np.testing.assert_array_equal(zero_mean, expected)
def test_build_texture_feature_vectors():
Vt_shape, s, n_shape_components, mean_value_points, triangles = pca.load('data/test_data/pca_shape_model.npy')
Vt_texture, s_texture, n_texture_components, mean_values_texture, _ = pca.load('data/test_data/pca_texture_model.npy')
InputPoints = imm.IMMPoints(filename='data/imm_face_db/40-3m.asf')
input_image = InputPoints.get_image()
MeanPoints = imm.IMMPoints(points_list=mean_value_points)
mean_points = MeanPoints.get_scaled_points(input_image.shape)
input_points = InputPoints.get_scaled_points(input_image.shape)
tri.reconstruct_texture(input_image, input_image, Vt_texture, input_points, mean_points,
mean_values_texture, triangles, n_texture_components)
dst = tri.get_texture(mean_points, mean_values_texture)
assert np.mean(input_points) > 1.0, 'should be greater than 1.0, because \
it array should be scaled to the image width and height'
assert np.mean(mean_points) > 1.0, 'should be greater than 1.0, because \
it array should be scaled to the image width and height'
#cv2.imshow('original', imm_points.get_image())
#cv2.imshow('reconstructed', input_image)
#cv2.imshow('main face', dst)
#cv2.waitKey(0) & 0xFF
#cv2.destroyAllWindows()
@pytest.mark.skipif(True, reason='not suitable for pytest')
def test_get_pixel_values():
asf_file = '../data/imm_face_db/40-2m.asf'
imm = imm_points.IMMPoints(filename=asf_file)
Vt, s, n_components, mean_shape, triangles = pca.load(args.model_shape_file)
points = imm.get_points()
image = imm.get_image()
......
......@@ -5,28 +5,39 @@ import numpy as np
import argparse
import os
import aam
class IMMPoints():
class IMMPoints(aam.AAMPoints):
"""Accepts IMM datapoint file which can be shown or used"""
def __init__(self, filename=None, points=None):
def __init__(self, filename=None, points_list=None):
"""
Args:
filename: optional .asf file with the imm format
points: optional list of x,y points
"""
self.points = points if points is not None else []
assert filename is not None or points_list is not None, 'filename or \
a ndarray of points list should be given'
self.filename = filename
if filename:
self.import_file(filename)
points_list = self.import_file(filename)
aam.AAMPoints.__init__(
self, normalized_flattened_points_list=points_list.flatten(),
actual_shape=(58, 2)
)
def get_points(self):
return self.points
return self.points_list
def get_image(self):
return cv2.imread(self.image_file)
def import_file(self, filename):
points_list = []
with open(filename, 'r') as f:
lines = f.readlines()
data = lines[16:74]
......@@ -34,9 +45,9 @@ class IMMPoints():
self.image_file = "{}/{}".format(dir_name, lines[-1].strip())
for d in data:
self.points.append(d.split()[2:4])
points_list.append(d.split()[2:4])
self.points = np.asarray(self.points, dtype='f')
return np.asarray(points_list, dtype='f')
def draw_triangles(self, image, points, multiply=True):
if multiply:
......@@ -61,16 +72,16 @@ class IMMPoints():
cv2.circle(image, tuple(p), 3, color=(0, 255, 100))
def show_on_image(self, image, window_name='image', multiply=True):
self.draw_triangles(image, self.points, multiply=multiply)
self.draw_triangles(image, self.points_list, multiply=multiply)
def show(self, window_name='image'):
"""show the image and datapoints on the image"""
assert(len(self.points) > 0)
assert(len(self.points_list) > 0)
assert(len(self.filename) > 0)
image = self.get_image()
self.draw_triangles(image, self.points)
self.draw_triangles(image, self.points_list)
def get_imm_points(files):
......
......@@ -86,8 +86,13 @@ def save_pca_model_texture(args):
Vt, s, n_components, mean_shape, triangles = pca.load(args.model_shape_file)
MeanPoints = aam.AAMPoints(
normalized_flattened_points_list=mean_value_points,
actual_shape=(58, 2)
)
textures = aam.build_texture_feature_vectors(
args.files, imm.get_imm_image_with_landmarks, mean_shape, triangles
args.files, imm.get_imm_image_with_landmarks, MeanPoints, triangles
)
mean_texture = aam.get_mean(textures)
......@@ -166,13 +171,11 @@ def show_pca_model(args):
assert args.model_shape_file, '--model_texture_file needs to be provided to save the pca model'
assert args.model_texture_file, '--model_texture_file needs to be provided to save the pca model'
from utils.triangles import draw_shape, draw_texture
from utils.triangles import draw_shape, get_texture
Vt_shape, s, n_shape_components, mean_values_shape, triangles = pca.load(args.model_shape_file)
Vt_texture, s_texture, n_texture_components, mean_values_texture, _ = pca.load(args.model_texture_file)
image = np.full((480, 640, 3), fill_value=255, dtype=np.uint8)
imm_points = imm.IMMPoints(filename='data/imm_face_db/40-1m.asf')
input_image = imm_points.get_image()
input_points = imm_points.get_points()
......@@ -186,14 +189,10 @@ def show_pca_model(args):
mean_values_shape[:, 1] = mean_values_shape[:, 1] * h
while True:
#draw_texture(input_image, image, Vt_texture, input_points, mean_values_shape,
# mean_values_texture, triangles, n_texture_components)
#draw_shape(image, mean_values_shape, triangles, multiply=False)
draw_texture(input_image, image, Vt_texture, input_points, mean_values_shape,
mean_values_texture, triangles, n_texture_components)
dst = get_texture(mean_values_shape, mean_values_texture)
cv2.imshow('input_image', input_image)
cv2.imshow('image', image)
cv2.imshow('image', dst)
k = cv2.waitKey(0) & 0xFF
if k == 27:
......@@ -206,40 +205,26 @@ def show_reconstruction(args):
assert args.model_shape_file, '--model_texture_file needs to be provided to save the pca model'
assert args.model_texture_file, '--model_texture_file needs to be provided to save the pca model'
from utils.triangles import draw_shape, draw_texture, reconstruct_texture
from utils import triangles as tri
Vt_shape, s, n_shape_components, mean_values_shape, triangles = pca.load(args.model_shape_file)
Vt_shape, s, n_shape_components, mean_value_points, triangles = pca.load(args.model_shape_file)
Vt_texture, s_texture, n_texture_components, mean_values_texture, _ = pca.load(args.model_texture_file)
image = np.full((480, 640, 3), fill_value=0, dtype=np.uint8)
image_2 = np.full((480, 640, 3), fill_value=0, dtype=np.uint8)
InputPoints = imm.IMMPoints(filename='data/imm_face_db/40-3m.asf')
input_image = InputPoints.get_image()
imm_points = imm.IMMPoints(filename='data/imm_face_db/40-3m.asf')
input_image = imm_points.get_image()
input_points = imm_points.get_points()
h, w, c = input_image.shape
input_points[:, 0] = input_points[:, 0] * w
input_points[:, 1] = input_points[:, 1] * h
mean_values_shape = mean_values_shape.reshape((58, 2))
mean_values_shape[:, 0] = mean_values_shape[:, 0] * w
mean_values_shape[:, 1] = mean_values_shape[:, 1] * h
MeanPoints = imm.IMMPoints(points_list=mean_value_points)
MeanPoints.get_scaled_points(input_image.shape)
while True:
#reconstruct_texture(input_image, image, Vt_texture, input_points, mean_values_shape,
# mean_values_texture, triangles, n_texture_components)
reconstruct_texture(input_image, input_image, Vt_texture, input_points, mean_values_shape,
mean_values_texture, triangles, n_texture_components)
draw_texture(input_image, image_2, Vt_texture, input_points, mean_values_shape,
mean_values_texture, triangles, n_texture_components)
#draw_shape(image_2, mean_values_shape, triangles, multiply=False)
#draw_shape(input_image, input_points, triangles, multiply=False)
tri.reconstruct_texture(input_image, input_image, Vt_texture,
InputPoints, MeanPoints,
mean_values_texture, triangles, n_texture_components)
dst = tri.get_texture(MeanPoints, mean_values_texture)
cv2.imshow('original', imm_points.get_image())
cv2.imshow('original', InputPoints.get_image())
cv2.imshow('reconstructed', input_image)
cv2.imshow('image_2', image_2)
cv2.imshow('main face', dst)
k = cv2.waitKey(0) & 0xFF
......
......@@ -5,8 +5,8 @@ from distutils.extension import Extension
from Cython.Build import cythonize
extensions = [
Extension(
'generate_head_texture',
['generate_head_texture.pyx'],
'texture',
['texture.pyx'],
include_dirs=[np.get_include()], )
]
......
......@@ -57,10 +57,9 @@ cdef inline np.ndarray[double, ndim=2] barycentric2cartesian(
@cython.boundscheck(False)
@cython.wraparound(False)
def fill_triangle(np.ndarray[unsigned char, ndim=1] src,
def fill_triangle(np.ndarray[unsigned char, ndim=3] src,
np.ndarray[unsigned char, ndim=3] dst,
int x1, int y1, int x2, int y2, int x3, int y3, int offset,
int index):
int x1, int y1, int x2, int y2, int x3, int y3):
"""
Fill a triangle by applying the Barycentric Algorithm for deciding if a
point lies inside or outside a triangle.
......@@ -96,20 +95,18 @@ def fill_triangle(np.ndarray[unsigned char, ndim=1] src,
# notice we have a soft margin of -0.00001, which makes sure there are no
# gaps due to rounding issues
if s >= -0.01 and t >= -0.01 and s + t <= 1.0:
dst[y, x, :] = src_reshaped[j, i, :]
return (w * h * 3)
dst[y, x, :] = src[y, x, :]
@cython.boundscheck(False)
@cython.wraparound(False)
def fill_triangle_src_dst(np.ndarray[unsigned char, ndim=3] src,
np.ndarray[unsigned char, ndim=3] dst,
int src_x1, int src_y1, int src_x2, int src_y2,
int src_x3, int src_y3,
int dst_x1, int dst_y1, int dst_x2, int dst_y2,
int dst_x3, int dst_y3,
int offset_x, int offset_y):
np.ndarray[unsigned char, ndim=3] dst,
int src_x1, int src_y1, int src_x2, int src_y2,
int src_x3, int src_y3,
int dst_x1, int dst_y1, int dst_x2, int dst_y2,
int dst_x3, int dst_y3,
int offset_x, int offset_y):
cdef np.ndarray triangle_x = np.array([dst_x1, dst_x2, dst_x3])
cdef np.ndarray triangle_y = np.array([dst_y1, dst_y2, dst_y3])
......@@ -151,12 +148,12 @@ def fill_triangle_src_dst(np.ndarray[unsigned char, ndim=3] src,
@cython.boundscheck(False)
@cython.wraparound(False)
def get_row_colors_triangle(np.ndarray[unsigned char, ndim=3] src,
np.ndarray[unsigned char, ndim=3] dst,
int src_x1, int src_y1, int src_x2, int src_y2,
int src_x3, int src_y3,
int dst_x1, int dst_y1, int dst_x2, int dst_y2,
int dst_x3, int dst_y3):
def fill_triangle_src_dst(np.ndarray[unsigned char, ndim=3] src,
np.ndarray[unsigned char, ndim=3] dst,
int src_x1, int src_y1, int src_x2, int src_y2,
int src_x3, int src_y3,
int dst_x1, int dst_y1, int dst_x2, int dst_y2,
int dst_x3, int dst_y3):
"""
Fill a triangle by applying the Barycentric Algorithm for deciding if a
point lies inside or outside a triangle.
......
......@@ -71,48 +71,45 @@ def draw_shape(image, points, triangles, multiply=True):
cv2.circle(image, tuple(p), 3, color=(0, 255, 100))
def draw_texture(src, dst, Vt, points2d_src, points2d_dst, texture, triangles, n_components):
texture = np.asarray(texture, np.uint8)
offset = 0
def get_texture(Points, flattened_texture):
offset_x, offset_y, w_slice, h_slice = Points.get_bounding_box()
for t, tri in enumerate(triangles):
dst_p1, dst_p2, dst_p3 = points2d_dst[tri]
offset += fill_triangle(
texture, dst,
dst_p1[0], dst_p1[1],
dst_p2[0], dst_p2[1],
dst_p3[0], dst_p3[1],
offset,
t
)
# Make a rectangle image from the flattened texture array
return np.asarray(flattened_texture, np.uint8).reshape((h_slice, w_slice, 3))
def reconstruct_texture(src, dst, Vt, points2d_src, points2d_dst, mean_texture, triangles, n_components):
def reconstruct_texture(src, dst, Vt, SrcPoints, DstPoints,
mean_texture, triangles, n_components):
# S_mean format
h, w, c = src.shape
input_texture = np.full((h, w, 3), fill_value=0, dtype=np.uint8)
aam.sample_from_triangles(src, points2d_src, points2d_dst, triangles, input_texture)
hull = cv2.convexHull(points2d_dst, returnPoints=True)
offset_x, offset_y, w_slice, h_slice = cv2.boundingRect(hull)
points2d_src = SrcPoints.get_scaled_points(src.shape)
points2d_dst = DstPoints.get_scaled_points(dst.shape)
aam.sample_from_triangles(
src,
points2d_src,
points2d_dst,
triangles,
input_texture
)
offset_x, offset_y, w_slice, h_slice = DstPoints.get_bounding_box()
input_texture = input_texture[offset_y: offset_y + h_slice,
offset_x: offset_x + w_slice].flatten()
# Still in S_mean format
## Still in S_mean format
r_texture = pca.reconstruct(input_texture, Vt, mean_texture)
# Make an image from the float data
r_texture = np.asarray(r_texture, np.uint8).reshape((h_slice, w_slice, 3))
offset = 0
# subtract the offset
## subtract the offset
points2d_dst[:, 0] -= offset_x
points2d_dst[:, 1] -= offset_y
for t, tri in enumerate(triangles):
for tri in triangles:
src_p1, src_p2, src_p3 = points2d_src[tri]
dst_p1, dst_p2, dst_p3 = points2d_dst[tri]
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment