Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
P
py-3d-face-reconstruction
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Richard Torenvliet
py-3d-face-reconstruction
Commits
75db1611
Commit
75db1611
authored
Apr 16, 2016
by
Richard Torenvliet
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Refactored some code and set the trackbar to 0
parent
acb7592b
Changes
8
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
145 additions
and
86 deletions
+145
-86
.gitignore
.gitignore
+1
-0
src/aam.py
src/aam.py
+1
-1
src/aam_test.py
src/aam_test.py
+8
-8
src/imm_points.py
src/imm_points.py
+60
-0
src/imm_points_test.py
src/imm_points_test.py
+18
-0
src/main.py
src/main.py
+52
-37
src/pca.py
src/pca.py
+2
-40
src/pca_test.py
src/pca_test.py
+3
-0
No files found.
.gitignore
View file @
75db1611
data/*
data/*
src/.cache/*
src/aam.py
View file @
75db1611
import
numpy
as
np
import
numpy
as
np
def
build_mean_aam
(
imm_points
):
def
get_mean
(
imm_points
):
""" construct a mean from a matrix of x,y values
""" construct a mean from a matrix of x,y values
Args:
Args:
imm_points(numpy array) that follows the following structure:
imm_points(numpy array) that follows the following structure:
...
...
src/aam_test.py
View file @
75db1611
import
numpy
as
np
import
numpy
as
np
from
aam
import
build_mean_aam
from
aam
import
get_mean
def
test_build_mean_aan
():
def
test_build_mean_aan
():
...
@@ -14,28 +14,28 @@ def test_build_mean_aan():
...
@@ -14,28 +14,28 @@ def test_build_mean_aan():
[
2.5
,
5.
]
[
2.5
,
5.
]
])
])
mean
=
build_mean_aam
(
imm_points
)
mean
=
get_mean
(
imm_points
)
np
.
testing
.
assert_array_equal
(
mean
,
expected
)
np
.
testing
.
assert_array_equal
(
mean
,
expected
)
def
test_zero_mean_aan
():
def
test_zero_mean_aan
():
imm_points
=
np
.
array
([
imm_points
=
np
.
array
([
[
[
1
,
2
],
[
2
,
4
]
],
[
1
,
2
,
2
,
4
],
[
[
2
,
3
],
[
3
,
6
]
],
[
2
,
3
,
3
,
6
],
])
])
expected
=
np
.
array
([
expected
=
np
.
array
([
[
[
-
0.5
,
-
0.5
],
[
-
0.5
,
-
1.0
]
],
[
-
0.5
,
-
0.5
,
-
0.5
,
-
1.0
],
[
[
0.5
,
0.5
],
[
0.5
,
1.0
]
],
[
0.5
,
0.5
,
0.5
,
1.0
],
])
])
mean
=
build_mean_aam
(
imm_points
)
mean
=
get_mean
(
imm_points
)
zero_mean
=
imm_points
-
mean
zero_mean
=
imm_points
-
mean
# test that zero mean has indeed zero mean
# test that zero mean has indeed zero mean
np
.
testing
.
assert_array_equal
(
np
.
testing
.
assert_array_equal
(
np
.
mean
(
zero_mean
,
axis
=
0
),
np
.
zeros
((
2
,
2
))
np
.
mean
(
zero_mean
,
axis
=
0
),
np
.
zeros
((
4
))
)
)
np
.
testing
.
assert_array_equal
(
zero_mean
,
expected
)
np
.
testing
.
assert_array_equal
(
zero_mean
,
expected
)
src/imm_points.py
View file @
75db1611
...
@@ -70,6 +70,66 @@ class IMMPoints():
...
@@ -70,6 +70,66 @@ class IMMPoints():
cv2
.
imshow
(
window_name
,
img
)
cv2
.
imshow
(
window_name
,
img
)
def
flatten_feature_vectors
(
data
):
"""
Flattens the feature vectors inside a ndarray
Example:
input:
[
[[1, 2], [3, 4], [5, 6]],
...
[[1, 2], [3, 4], [5, 6]]
]
output:
[
[1, 2, 3, 4, 5, 6],
...
[1, 2, 3, 4, 5, 6]
]
Args:
data (numpy array): array of feature vectors
return:
array: (numpy array): array flattened feature vectors
"""
flattened
=
[]
rows
,
_
,
_
=
data
.
shape
for
i
in
range
(
rows
):
flattened
.
append
(
np
.
ndarray
.
flatten
(
data
[
i
]))
return
np
.
array
(
flattened
)
def
build_feature_vectors
(
files
,
flattened
=
False
):
"""
Gets the aam points from the files and appends them seperately to one
array.
Args:
files (list): list files
return:
list: list of feature vectors
"""
imm_points
=
[]
for
f
in
files
:
imm
=
IMMPoints
(
filename
=
f
)
imm_points
.
append
(
imm
.
get_points
())
imm_points
=
np
.
array
(
imm_points
)
if
flattened
:
imm_points
=
flatten_feature_vectors
(
imm_points
)
return
imm_points
def
add_parser_options
():
def
add_parser_options
():
parser
=
argparse
.
ArgumentParser
(
description
=
'IMMPoints tool'
)
parser
=
argparse
.
ArgumentParser
(
description
=
'IMMPoints tool'
)
...
...
src/imm_points_test.py
0 → 100644
View file @
75db1611
import
numpy
as
np
from
imm_points
import
flatten_feature_vectors
def
test_flatten_feature_vectors
():
imm_points
=
np
.
array
([
[[
1
,
2
],
[
2
,
4
]],
[[
2
,
3
],
[
3
,
6
]],
])
expected
=
np
.
array
([
[
1
,
2
,
2
,
4
],
[
2
,
3
,
3
,
6
]
])
result
=
flatten_feature_vectors
(
imm_points
)
np
.
testing
.
assert_array_equal
(
result
,
expected
)
src/main.py
View file @
75db1611
...
@@ -5,8 +5,10 @@ import cv2
...
@@ -5,8 +5,10 @@ import cv2
import
numpy
as
np
import
numpy
as
np
from
pca
import
pca
,
reconstruct
from
pca
import
pca
,
reconstruct
from
aam
import
build_mean_aam
from
aam
import
get_mean
from
imm_points
import
IMMPoints
from
imm_points
import
IMMPoints
,
build_feature_vectors
,
\
flatten_feature_vectors
def
nothing
(
_
):
def
nothing
(
_
):
...
@@ -16,11 +18,23 @@ def nothing(_):
...
@@ -16,11 +18,23 @@ def nothing(_):
def
add_parser_options
():
def
add_parser_options
():
parser
=
argparse
.
ArgumentParser
(
description
=
'IMMPoints tool'
)
parser
=
argparse
.
ArgumentParser
(
description
=
'IMMPoints tool'
)
pca_group
=
parser
.
add_argument_group
(
'show_pca'
)
pca_group
.
add_argument
(
'--show_pca'
,
action
=
'store_true'
,
help
=
'number of principle components to keep and are able to manipulate'
)
# asf files
# asf files
p
arser
.
add_argument
(
p
ca_group
.
add_argument
(
'--asf'
,
nargs
=
'+'
,
help
=
'asf files to process'
'--asf'
,
nargs
=
'+'
,
help
=
'asf files to process'
)
)
pca_group
.
add_argument
(
'--n_components'
,
default
=
5
,
type
=
int
,
help
=
'number of principle components to keep and are able to manipulate'
)
return
parser
return
parser
...
@@ -28,52 +42,53 @@ def init_eigenvalue_trackbars(n_components, s):
...
@@ -28,52 +42,53 @@ def init_eigenvalue_trackbars(n_components, s):
cv2
.
namedWindow
(
'eigenvalues'
)
cv2
.
namedWindow
(
'eigenvalues'
)
for
i
in
range
(
n_components
):
for
i
in
range
(
n_components
):
cv2
.
createTrackbar
(
'{}'
.
format
(
i
),
'eigenvalues'
,
0
,
1000
,
nothing
)
cv2
.
createTrackbar
(
'{}'
.
format
(
i
),
'eigenvalues'
,
50
0
,
1000
,
nothing
)
if
__name__
==
'__main__'
:
def
show_pca
():
parser
=
add_parser_options
()
assert
args
.
asf
,
'--asf files should be supplied'
args
=
parser
.
parse_args
()
imm_points
=
build_feature_vectors
(
args
.
asf
,
flattened
=
True
)
mean_values
=
get_mean
(
imm_points
)
if
args
.
asf
:
U
,
s
,
Vt
=
pca
(
imm_points
,
mean_values
)
imm_points
=
[]
for
f
in
args
.
asf
:
# init trackbars
imm
=
IMMPoints
(
filename
=
f
)
index
=
0
imm_points
.
append
(
imm
.
get_points
()
)
cv2
.
namedWindow
(
'index'
)
# imm.show(
)
cv2
.
createTrackbar
(
'index'
,
'index'
,
index
,
len
(
args
.
asf
)
-
1
,
nothing
)
imm_points
=
np
.
array
(
imm_points
)
n_components
=
args
.
n_components
init_eigenvalue_trackbars
(
n_components
,
s
)
mean_values
=
build_mean_aam
(
np
.
array
(
imm_points
))
# use a copy of s to manipulate so we never touch the original
U
,
s
,
Vt
=
pca
(
imm_points
,
mean_value
s
)
s_copy
=
copy
.
copy
(
s
)
index
=
0
while
True
:
cv2
.
namedWindow
(
'index'
)
projection
=
reconstruct
(
U
,
s_copy
,
Vt
,
n_components
)
cv2
.
createTrackbar
(
'index'
,
'index'
,
index
,
len
(
args
.
asf
)
-
1
,
nothing
)
X_reconstructed
=
(
projection
[
index
]
+
mean_values
).
reshape
((
58
,
2
)
)
n_components
=
5
imm
=
IMMPoints
(
points
=
X_reconstructed
)
init_eigenvalue_trackbars
(
n_components
,
s
)
img
=
np
.
full
((
480
,
640
,
3
),
255
,
np
.
uint8
)
imm
.
show_on_img
(
img
)
s_copy
=
copy
.
copy
(
s
)
for
i
in
range
(
n_components
):
s_copy
[
i
]
=
s
[
i
]
*
((
cv2
.
getTrackbarPos
(
str
(
i
),
'eigenvalues'
)
-
500
)
/
10.0
)
while
True
:
index
=
cv2
.
getTrackbarPos
(
'index'
,
'index'
)
projection
=
reconstruct
(
U
,
s_copy
,
Vt
,
n_components
)
imm
=
IMMPoints
(
filename
=
args
.
asf
[
index
]
)
X_reconstructed
=
projection
[
index
].
reshape
((
58
,
2
))
+
mean_values
imm
.
show
(
window_name
=
'original'
)
imm
=
IMMPoints
(
points
=
X_reconstructed
)
k
=
cv2
.
waitKey
(
1
)
&
0xFF
img
=
np
.
full
((
480
,
640
,
3
),
255
,
np
.
uint8
)
if
k
==
27
:
imm
.
show_on_img
(
img
)
break
for
i
in
range
(
n_components
):
cv2
.
destroyAllWindows
()
s_copy
[
i
]
=
s
[
i
]
*
(
cv2
.
getTrackbarPos
(
str
(
i
),
'eigenvalues'
)
/
10.0
)
index
=
cv2
.
getTrackbarPos
(
'index'
,
'index'
)
imm
=
IMMPoints
(
filename
=
args
.
asf
[
index
])
imm
.
show
(
window_name
=
'original'
)
k
=
cv2
.
waitKey
(
1
)
&
0xFF
if
__name__
==
'__main__'
:
if
k
==
27
:
parser
=
add_parser_options
()
break
args
=
parser
.
parse_args
()
cv2
.
destroyAllWindows
()
if
args
.
show_pca
:
show_pca
()
src/pca.py
View file @
75db1611
import
numpy
as
np
import
numpy
as
np
def
flatten_feature_vectors
(
data
):
"""
Flattens the feature vectors inside.
Example:
input:
[
[[1, 2], [3, 4], [5, 6]],
...
[[1, 2], [3, 4], [5, 6]]
]
output:
[
[1, 2, 3, 4, 5, 6],
...
[1, 2, 3, 4, 5, 6]
]
Args:
data (numpy array): array of feature vectors
return:
array: (numpy array): array flattened feature vectors
"""
flattened
=
[]
y
,
x
,
dim
=
data
.
shape
for
i
in
range
(
y
):
flattened
.
append
(
np
.
ndarray
.
flatten
(
data
[
i
]))
return
np
.
array
(
flattened
)
def
pca
(
data
,
mean_values
):
def
pca
(
data
,
mean_values
):
# subtract mean
# subtract mean
zero_mean
=
data
-
mean_values
zero_mean
=
data
-
mean_values
X
=
flatten_feature_vectors
(
zero_mean
)
_
,
dim
=
X
.
shape
U
,
s
,
V
=
np
.
linalg
.
svd
(
X
,
full_matrices
=
False
)
U
,
s
,
V
=
np
.
linalg
.
svd
(
zero_mean
,
full_matrices
=
False
)
return
U
,
s
,
V
return
U
,
s
,
V
def
reconstruct
(
U
,
s
,
Vt
,
n_components
):
def
reconstruct
(
U
,
s
,
Vt
,
n_components
):
return
np
.
dot
(
U
[:,
:
n_components
],
return
np
.
dot
(
U
[:,
:
n_components
],
np
.
dot
(
np
.
diag
(
s
[:
n_components
]),
Vt
[:
n_components
]))
np
.
dot
(
np
.
diag
(
s
[:
n_components
]),
Vt
[:
n_components
]))
src/pca_test.py
0 → 100644
View file @
75db1611
import
numpy
as
np
from
pca
import
pca
,
reconstruct
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment