Skip to content
Snippets Groups Projects
Commit 3764204d authored by Richard Torenvliet's avatar Richard Torenvliet
Browse files

Initial commit

parents
No related branches found
No related tags found
No related merge requests found
data/*
## Prerequisites
Run the following command
~~~~
$ make
~~~~
Will get the data needed for this tool.
## References
1. [imm_dataset](http://www.imm.dtu.dk/~aam/datasets/datasets.html, "Imm dataset")
## Download the imm database
wget http://www.imm.dtu.dk/~aam/datasets/imm_face_db.tar.gz && tar -xvzf imm_face_db.tar.gz
makefile 0 → 100644
all: data
data: data/imm_face_db
data/imm_face_db: data/imm_face_db.tar.gz
(cd data; \
mkdir -p imm_face_db; \
tar -xvzf imm_face_db.tar.gz -C imm_face_db \
)
data/imm_face_db.tar.gz:
(cd data; wget http://www.imm.dtu.dk/~aam/datasets/imm_face_db.tar.gz)
from matplotlib.tri import Triangulation
import cv2
import numpy as np
import argparse
class IMMPoints():
"""Accepts IMM datapoint file which can be shown or used"""
def __init__(self, filename=None, points=None):
"""
Args:
filename: optional .asf file with the imm format
points: optional list of x,y points
"""
self.points = points if points is not None else []
self.filename = filename
if filename:
self.import_file(filename)
def get_points(self):
return self.points
def import_file(self, filename):
with open(filename, 'r') as f:
lines = f.readlines()
# store the filename we've got
self.filename = lines[-1].strip()
data = lines[16:74]
for d in data:
self.points.append(d.split()[2:4])
self.points = np.asarray(self.points, dtype='f')
def draw_triangles(self, img, points):
assert(len(self.points) > 0)
h, w, c = img.shape
points[:, 0] = points[:, 0] * w
points[:, 1] = points[:, 1] * h
point_indices = list(range(0, 58))
triangles = Triangulation(points[:, 0], points[:, 1])
for t, tri in enumerate(triangles.triangles):
p1, p2, p3 = points[tri]
cv2.line(img, tuple(p1), tuple(p2), (255, 0, 100), 1)
cv2.line(img, tuple(p2), tuple(p3), (255, 0, 100), 1)
cv2.line(img, tuple(p3), tuple(p1), (255, 0, 100), 1)
for i, p in enumerate(points):
point_index = int(point_indices[i])
cv2.putText(img, str(point_index), tuple((p[0], p[1])),
cv2.FONT_HERSHEY_SIMPLEX, .5, (100, 0, 255))
cv2.circle(img, tuple(p), 3, color=(0, 255, 100))
def show_on_img(self, img):
self.draw_triangles(img, self.points)
cv2.imshow('image', img)
cv2.waitKey(0)
def show(self):
"""show the image and datapoints on the image"""
assert(len(self.points) > 0)
assert(len(self.filename) > 0)
img = cv2.imread('data/imm_face_db/' + self.filename)
self.draw_triangles(img, self.points)
cv2.imshow('image', img)
cv2.waitKey(0)
def add_parser_options():
parser = argparse.ArgumentParser(description='IMMPoints tool')
# asf files
parser.add_argument(
'asf', type=str, nargs='+', help='asf files to process'
)
return parser
if __name__ == '__main__':
parser = add_parser_options()
args = parser.parse_args()
for f in args.asf:
imm = IMMPoints(f)
imm.show()
from pca import pca
import numpy as np
import argparse
from imm_points import IMMPoints
def add_parser_options():
parser = argparse.ArgumentParser(description='IMMPoints tool')
# asf files
parser.add_argument(
'--asf', nargs='+', help='asf files to process'
)
return parser
def build_mean_aam(imm_points):
""" construct a mean from a matrix of x,y values
Args:
imm_points(numpy array)that follows the follwing structure:
observations:
0. [[x_0_0, y_0_0], ... , [x_0_m, y_0_m]],
1. [[x_1_0, y_1_0], ... , [x_1_m, y_1_m]],
2. [[x_2_0, y_2_0], ... , [x_2_m, y_2_m]],
3. [[x_3_0, y_3_0], ... , [x_3_m, y_3_m]]
.... .... .m...
n. [[x_4_0, y_4_0], ... , [x_n_m, y_n_m]]
Returns mean_values (numpy array)
This vector containts the mean values of the corresponding column, like so:
0. [[x_0_0, y_0_0], ... , [x_0_k, y_0_k]],
1. [[x_1_0, y_1_0], ... , [x_1_k, y_1_k]],
2. [[x_2_0, y_2_0], ... , [x_2_k, y_2_k]],
3. [[x_3_0, y_3_0], ... , [x_3_k, y_3_k]]
.... .... .....
n. [[x_4_0, y_4_0], ... , [x_n_k, y_n_k]]
mean. [[x_mean_0, y_mean_0], ... [x_mean_n, y_mean_n]]
"""
mean_values = []
for i in range(imm_points.shape[1]):
mean_values.append(np.mean(imm_points[:, i], axis=0))
return np.array(mean_values)
if __name__ == '__main__':
parser = add_parser_options()
args = parser.parse_args()
if args.asf:
imm_points = []
for f in args.asf:
imm = IMMPoints(filename=f)
imm_points.append(imm.get_points())
# imm.show()
mean_values = build_mean_aam(np.array(imm_points))
pca(imm_points, mean_values)
# show immpoints
imm = IMMPoints(points=mean_values)
img = np.full((480, 640, 3), 255, np.uint8)
imm.show_on_img(img)
def pca(data, mean_values):
print mean_values
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment