Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
E
eos
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Richard Torenvliet
eos
Commits
e5f7ce06
Commit
e5f7ce06
authored
Mar 12, 2017
by
Patrik Huber
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Changed NNLS blendshape fitting to use only Eigen
parent
cf7d0e24
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
22 additions
and
35 deletions
+22
-35
include/eos/fitting/blendshape_fitting.hpp
include/eos/fitting/blendshape_fitting.hpp
+22
-35
No files found.
include/eos/fitting/blendshape_fitting.hpp
View file @
e5f7ce06
...
@@ -24,10 +24,9 @@
...
@@ -24,10 +24,9 @@
#include "eos/morphablemodel/Blendshape.hpp"
#include "eos/morphablemodel/Blendshape.hpp"
#include "Eigen/Core"
// for nnls.h
#include "Eigen/Core"
#include "nnls.h"
#include "nnls.h"
#include "Eigen/Core"
#include "opencv2/core/core.hpp"
#include "opencv2/core/core.hpp"
#include <vector>
#include <vector>
...
@@ -139,65 +138,53 @@ inline std::vector<float> fit_blendshapes_to_landmarks_nnls(const std::vector<eo
...
@@ -139,65 +138,53 @@ inline std::vector<float> fit_blendshapes_to_landmarks_nnls(const std::vector<eo
{
{
assert
(
landmarks
.
size
()
==
vertex_ids
.
size
());
assert
(
landmarks
.
size
()
==
vertex_ids
.
size
());
using
cv
::
Mat
;
using
Eigen
::
VectorXf
;
using
Eigen
::
MatrixXf
;
using
Eigen
::
MatrixXf
;
const
int
num_blendshapes
=
blendshapes
.
size
();
const
int
num_blendshapes
=
blendshapes
.
size
();
const
int
num_landmarks
=
static_cast
<
int
>
(
landmarks
.
size
());
const
int
num_landmarks
=
static_cast
<
int
>
(
landmarks
.
size
());
// Copy all blendshapes into a "basis" matrix with each blendshape being a column:
// Copy all blendshapes into a "basis" matrix with each blendshape being a column:
Eigen
::
Matrix
<
float
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
,
Eigen
::
RowMajor
>
blendshapes_as_basis
=
morphablemodel
::
to_matrix
(
blendshapes
);
MatrixXf
blendshapes_as_basis
=
morphablemodel
::
to_matrix
(
blendshapes
);
// Above converts to a RowMajor matrix on return - for now, since the core algorithm still uses cv::Mat (and OpenCV stores data in row-major memory order).
Mat
blendshapes_basis_as_mat
=
Mat
(
blendshapes_as_basis
.
rows
(),
blendshapes_as_basis
.
cols
(),
CV_32FC1
,
blendshapes_as_basis
.
data
());
// $\hat{V} \in R^{3N\times m-1}$, subselect the rows of the eigenvector matrix $V$ associated with the $N$ feature points
// $\hat{V} \in R^{3N\times m-1}$, subselect the rows of the eigenvector matrix $V$ associated with the $N$ feature points
// And we insert a row of zeros after every third row, resulting in matrix $\hat{V}_h \in R^{4N\times m-1}$:
// And we insert a row of zeros after every third row, resulting in matrix $\hat{V}_h \in R^{4N\times m-1}$:
Mat
V_hat_h
=
Mat
::
zeros
(
4
*
num_landmarks
,
num_blendshapes
,
CV_32FC1
);
Mat
rixXf
V_hat_h
=
MatrixXf
::
Zero
(
4
*
num_landmarks
,
num_blendshapes
);
int
row_index
=
0
;
int
row_index
=
0
;
for
(
int
i
=
0
;
i
<
num_landmarks
;
++
i
)
{
for
(
int
i
=
0
;
i
<
num_landmarks
;
++
i
)
{
Mat
basis_rows
=
blendshapes_basis_as_mat
.
rowRange
(
vertex_ids
[
i
]
*
3
,
(
vertex_ids
[
i
]
*
3
)
+
3
);
V_hat_h
.
block
(
row_index
,
0
,
3
,
V_hat_h
.
cols
())
=
blendshapes_as_basis
.
block
(
vertex_ids
[
i
]
*
3
,
0
,
3
,
blendshapes_as_basis
.
cols
());
basis_rows
.
copyTo
(
V_hat_h
.
rowRange
(
row_index
,
row_index
+
3
));
row_index
+=
4
;
// replace 3 rows and skip the 4th one, it has all zeros
row_index
+=
4
;
// replace 3 rows and skip the 4th one, it has all zeros
}
}
// Form a block diagonal matrix $P \in R^{3N\times 4N}$ in which the camera matrix C (P_Affine, affine_camera_matrix) is placed on the diagonal:
// Form a block diagonal matrix $P \in R^{3N\times 4N}$ in which the camera matrix C (P_Affine, affine_camera_matrix) is placed on the diagonal:
Mat
P
=
Mat
::
zeros
(
3
*
num_landmarks
,
4
*
num_landmarks
,
CV_32FC1
);
Mat
rixXf
P
=
MatrixXf
::
Zero
(
3
*
num_landmarks
,
4
*
num_landmarks
);
for
(
int
i
=
0
;
i
<
num_landmarks
;
++
i
)
{
for
(
int
i
=
0
;
i
<
num_landmarks
;
++
i
)
{
Mat
submatrix_to_replace
=
P
.
colRange
(
4
*
i
,
(
4
*
i
)
+
4
).
rowRange
(
3
*
i
,
(
3
*
i
)
+
3
)
;
using
RowMajorMatrixXf
=
Eigen
::
Matrix
<
float
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
,
Eigen
::
RowMajor
>
;
affine_camera_matrix
.
copyTo
(
submatrix_to_replace
);
P
.
block
(
3
*
i
,
4
*
i
,
3
,
4
)
=
Eigen
::
Map
<
RowMajorMatrixXf
>
(
affine_camera_matrix
.
ptr
<
float
>
(),
affine_camera_matrix
.
rows
,
affine_camera_matrix
.
cols
);
}
}
// The landmarks in matrix notation (in homogeneous coordinates), $3N\times 1$
// The landmarks in matrix notation (in homogeneous coordinates), $3N\times 1$
Mat
y
=
Mat
::
ones
(
3
*
num_landmarks
,
1
,
CV_32FC1
);
VectorXf
y
=
VectorXf
::
Ones
(
3
*
num_landmarks
);
for
(
int
i
=
0
;
i
<
num_landmarks
;
++
i
)
{
for
(
int
i
=
0
;
i
<
num_landmarks
;
++
i
)
{
y
.
at
<
float
>
(
3
*
i
,
0
)
=
landmarks
[
i
][
0
];
y
(
3
*
i
)
=
landmarks
[
i
][
0
];
y
.
at
<
float
>
((
3
*
i
)
+
1
,
0
)
=
landmarks
[
i
][
1
];
y
((
3
*
i
)
+
1
)
=
landmarks
[
i
][
1
];
//y
.at<float>((3 * i) + 2, 0
) = 1; // already 1, stays (homogeneous coordinate)
//y
_((3 * i) + 2
) = 1; // already 1, stays (homogeneous coordinate)
}
}
// The mean, with an added homogeneous coordinate (x_1, y_1, z_1, 1, x_2, ...)^t
// The mean, with an added homogeneous coordinate (x_1, y_1, z_1, 1, x_2, ...)^t
Mat
v_bar
=
Mat
::
ones
(
4
*
num_landmarks
,
1
,
CV_32FC1
);
VectorXf
v_bar
=
VectorXf
::
Ones
(
4
*
num_landmarks
);
for
(
int
i
=
0
;
i
<
num_landmarks
;
++
i
)
{
for
(
int
i
=
0
;
i
<
num_landmarks
;
++
i
)
{
cv
::
Vec4f
model_mean
(
face_instance
(
vertex_ids
[
i
]
*
3
),
face_instance
(
vertex_ids
[
i
]
*
3
+
1
),
face_instance
(
vertex_ids
[
i
]
*
3
+
2
),
1.0
f
);
v_bar
(
4
*
i
)
=
face_instance
(
vertex_ids
[
i
]
*
3
);
v_bar
.
at
<
float
>
(
4
*
i
,
0
)
=
model_mean
[
0
];
v_bar
((
4
*
i
)
+
1
)
=
face_instance
(
vertex_ids
[
i
]
*
3
+
1
);
v_bar
.
at
<
float
>
((
4
*
i
)
+
1
,
0
)
=
model_mean
[
1
];
v_bar
((
4
*
i
)
+
2
)
=
face_instance
(
vertex_ids
[
i
]
*
3
+
2
);
v_bar
.
at
<
float
>
((
4
*
i
)
+
2
,
0
)
=
model_mean
[
2
];
//v_bar((4 * i) + 3) = 1; // already 1, stays (homogeneous coordinate)
//v_bar.at<float>((4 * i) + 3, 0) = 1; // already 1, stays (homogeneous coordinate)
// note: now that a Vec4f is returned, we could use copyTo?
}
}
// Bring into standard regularised quadratic form:
// Bring into standard least squares form:
Mat
A
=
P
*
V_hat_h
;
// camera matrix times the basis
const
MatrixXf
A
=
P
*
V_hat_h
;
// camera matrix times the basis
Mat
b
=
P
*
v_bar
-
y
;
// camera matrix times the mean, minus the landmarks.
const
MatrixXf
b
=
P
*
v_bar
-
y
;
// camera matrix times the mean, minus the landmarks
// Solve using NNLS:
// Solve using NNLS:
using
RowMajorMatrixXf
=
Eigen
::
Matrix
<
float
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
,
Eigen
::
RowMajor
>
;
Eigen
::
Map
<
RowMajorMatrixXf
>
A_Eigen
(
A
.
ptr
<
float
>
(),
A
.
rows
,
A
.
cols
);
Eigen
::
Map
<
RowMajorMatrixXf
>
b_Eigen
(
b
.
ptr
<
float
>
(),
b
.
rows
,
b
.
cols
);
Eigen
::
VectorXf
x
;
Eigen
::
VectorXf
x
;
bool
non_singular
=
Eigen
::
NNLS
<
Eigen
::
MatrixXf
>::
solve
(
A_Eigen
,
-
b_Eigen
,
x
);
bool
non_singular
=
Eigen
::
NNLS
<
MatrixXf
>::
solve
(
A
,
-
b
,
x
);
Mat
c_s
(
x
.
rows
(),
x
.
cols
(),
CV_32FC1
,
x
.
data
());
// create an OpenCV Mat header for the Eigen data
return
std
::
vector
<
float
>
(
c_s
);
return
std
::
vector
<
float
>
(
x
.
data
(),
x
.
data
()
+
x
.
size
()
);
};
};
}
/* namespace fitting */
}
/* namespace fitting */
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment