Commit d36b8d41 authored by Patrik Huber's avatar Patrik Huber

Added app to convert a BFM raw binary file to a cereal binary model

parent 1c51f4c3
...@@ -37,10 +37,15 @@ endif() ...@@ -37,10 +37,15 @@ endif()
add_executable(scm-to-cereal scm-to-cereal.cpp) add_executable(scm-to-cereal scm-to-cereal.cpp)
target_link_libraries(scm-to-cereal ${OpenCV_LIBS} ${Boost_LIBRARIES}) target_link_libraries(scm-to-cereal ${OpenCV_LIBS} ${Boost_LIBRARIES})
# Converts a file created with share/convert_bfm2009_to_raw_binary.m to a cereal binary file:
add_executable(bfm-binary-to-cereal bfm-binary-to-cereal.cpp)
target_link_libraries(bfm-binary-to-cereal ${OpenCV_LIBS} ${Boost_LIBRARIES})
# Store a json file as cereal .bin: # Store a json file as cereal .bin:
add_executable(json-to-cereal-binary json-to-cereal-binary.cpp) add_executable(json-to-cereal-binary json-to-cereal-binary.cpp)
target_link_libraries(json-to-cereal-binary ${OpenCV_LIBS} ${Boost_LIBRARIES}) target_link_libraries(json-to-cereal-binary ${OpenCV_LIBS} ${Boost_LIBRARIES})
# install target: # install target:
install(TARGETS scm-to-cereal DESTINATION bin) install(TARGETS scm-to-cereal DESTINATION bin)
install(TARGETS bfm-binary-to-cereal DESTINATION bin)
install(TARGETS json-to-cereal-binary DESTINATION bin) install(TARGETS json-to-cereal-binary DESTINATION bin)
/*
* Eos - A 3D Morphable Model fitting library written in modern C++11/14.
*
* File: utils/bfm-binary-to-cereal.cpp
*
* Copyright 2016 Patrik Huber
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "eos/morphablemodel/MorphableModel.hpp"
#include "opencv2/core/core.hpp"
#include "boost/program_options.hpp"
#include "boost/filesystem.hpp"
#include <vector>
#include <iostream>
#include <fstream>
#include <string>
using namespace eos;
namespace po = boost::program_options;
namespace fs = boost::filesystem;
using std::cout;
using std::endl;
using std::vector;
using cv::Mat;
std::vector<cv::Vec2f> read_texcoords_from_obj(std::string obj_file)
{
std::vector<cv::Vec2f> texcoords;
std::ifstream file(obj_file);
if (!file.is_open()) {
throw std::runtime_error(std::string("Could not open landmark file: " + obj_file));
}
std::string line;
while (getline(file, line))
{
std::string first_two = line.substr(0, 2);
if (first_two != "vt") {
continue;
}
std::stringstream lineStream(line);
cv::Vec2f tc;
std::string throw_away;
if (!(lineStream >> throw_away >> tc[0] >> tc[1])) {
throw std::runtime_error(std::string("Texture coordinates format error while parsing the line: " + line));
}
texcoords.push_back(tc);
}
return texcoords;
}
/**
* Reads a raw binary file created with share/convert_bfm2009_to_raw_binary.m
* and outputs it as an eos .bin file. Optionally, an .obj file can be given -
* the texture coordinates from that obj will then be read and used as the
* model's texture coordinates (as the BFM comes without texture coordinates).
*/
int main(int argc, char *argv[])
{
fs::path bfm_file, obj_file, outputfile;
std::string file_type;
try {
po::options_description desc("Allowed options");
desc.add_options()
("help,h",
"display the help message")
("input,i", po::value<fs::path>(&bfm_file)->required(),
"input raw binary model file from Matlab script")
("texture-coordinates,t", po::value<fs::path>(&obj_file),
"optional .obj file to read texture coordinates from")
("output,o", po::value<fs::path>(&outputfile)->required()->default_value("bfm2009.bin"),
"output filename for the converted .bin file")
;
po::variables_map vm;
po::store(po::command_line_parser(argc, argv).options(desc).run(), vm);
if (vm.count("help")) {
cout << "Usage: bfm-binary-to-cereal [options]" << endl;
cout << desc;
return EXIT_SUCCESS;
}
po::notify(vm);
}
catch (const po::error& e) {
cout << "Error while parsing command-line arguments: " << e.what() << endl;
cout << "Use --help to display a list of options." << endl;
return EXIT_SUCCESS;
}
std::ifstream file(bfm_file.string(), std::ios::binary);
if (!file.is_open()) {
std::cout << "Unable to open model file: " << bfm_file.string() << std::endl;
return EXIT_FAILURE;
}
// We process the texcoords first, as reading the model takes longer
std::vector<cv::Vec2f> texture_coordinates;
if (!obj_file.empty())
{
texture_coordinates = read_texcoords_from_obj(obj_file.string());
}
// Read the shape model - first some dimensions:
int num_vertices = 0;
{
int num_vertices_times_three = 0; // the data dimension
file.read(reinterpret_cast<char*>(&num_vertices_times_three), 4); // 1 char = 1 byte. uint32=4bytes. float64=8bytes.
if (num_vertices_times_three % 3 != 0)
{
std::cout << "Shape: num_vertices_times_three % 3 != 0" << std::endl;
return EXIT_FAILURE;
}
num_vertices = num_vertices_times_three / 3;
}
int num_shape_basis_vectors = 0;
file.read(reinterpret_cast<char*>(&num_shape_basis_vectors), 4);
// Read the mean:
// We additionally divide each coordinate by 1000 to get from the domain
// of values in the BFM (e.g. -57000) to the BFM (values around e.g. -57).
Mat mean_shape(num_vertices * 3, 1, CV_32FC1);
for (int i = 0; i < num_vertices * 3; ++i) {
float value = 0.0f;
file.read(reinterpret_cast<char*>(&value), 4);
mean_shape.at<float>(i) = value / 1000.0f;
}
// Read the unnormalised shape basis matrix:
Mat unnormalised_pca_basis_shape(num_vertices * 3, num_shape_basis_vectors, CV_32FC1); // m x n (rows x cols) = numShapeDims x numShapePcaCoeffs
std::cout << "Loading shape PCA basis matrix with " << unnormalised_pca_basis_shape.rows << " rows and " << unnormalised_pca_basis_shape.cols << " cols." << std::endl;
for (int col = 0; col < num_shape_basis_vectors; ++col) {
for (int row = 0; row < num_vertices * 3; ++row) {
float value = 0.0f;
file.read(reinterpret_cast<char*>(&value), 4);
unnormalised_pca_basis_shape.at<float>(row, col) = value;
}
}
// Read the shape eigenvalues:
Mat eigenvalues_shape(num_shape_basis_vectors, 1, CV_32FC1);
for (int i = 0; i < num_shape_basis_vectors; ++i) {
float value = 0.0f;
file.read(reinterpret_cast<char*>(&value), 4);
eigenvalues_shape.at<float>(i, 0) = value;
}
// Read number of triangles and then the triangle list:
// We additionally subtract 1 to each triangle index, since
// the BFM triangle indices start at 1, not at 0.
int num_triangles = 0;
file.read(reinterpret_cast<char*>(&num_triangles), 4);
std::vector<std::array<int, 3>> triangle_list;
triangle_list.resize(num_triangles);
int v0, v1, v2;
for (int i = 0; i < num_triangles; ++i) {
v0 = v1 = v2 = 0;
file.read(reinterpret_cast<char*>(&v0), 4); // would be nice to pass a &vector and do it in one
file.read(reinterpret_cast<char*>(&v1), 4); // go, but didn't work. Maybe a cv::Mat would work?
file.read(reinterpret_cast<char*>(&v2), 4);
triangle_list[i][0] = v0 - 1;
triangle_list[i][1] = v1 - 1;
triangle_list[i][2] = v2 - 1;
}
// We read the unnormalised basis from the file. Now let's normalise it and store the normalised basis separately.
Mat normalised_pca_basis_shape = morphablemodel::normalise_pca_basis(unnormalised_pca_basis_shape, eigenvalues_shape);
morphablemodel::PcaModel shape_model(mean_shape, normalised_pca_basis_shape, eigenvalues_shape, triangle_list);
// Reading the colour (albedo) model:
int num_vertices_color = 0;
{
int num_vertices_times_three = 0; // the data dimension
file.read(reinterpret_cast<char*>(&num_vertices_times_three), 4); // 1 char = 1 byte. uint32=4bytes. float64=8bytes.
if (num_vertices_times_three % 3 != 0)
{
std::cout << "Colour: num_vertices_times_three % 3 != 0" << std::endl;
return EXIT_FAILURE;
}
num_vertices_color = num_vertices_times_three / 3;
}
int num_color_basis_vectors = 0;
file.read(reinterpret_cast<char*>(&num_color_basis_vectors), 4);
// Read the mean:
// We additionally divide each value by 255 to get from the domain
// of values in the BFM ([0, 255]) to the BFM ([0, 1]).
Mat mean_color(num_vertices_color * 3, 1, CV_32FC1);
for (int i = 0; i < num_vertices_color * 3; ++i) {
float value = 0.0f;
file.read(reinterpret_cast<char*>(&value), 4);
mean_color.at<float>(i) = value / 255.0f;
}
// Read the unnormalised colour basis matrix:
Mat unnormalised_pca_basis_color(num_vertices_color * 3, num_color_basis_vectors, CV_32FC1); // m x n (rows x cols) = num_colour_dims x num_colour_bases
std::cout << "Loading colour PCA basis matrix with " << unnormalised_pca_basis_color.rows << " rows and " << unnormalised_pca_basis_color.cols << " cols." << std::endl;
for (int col = 0; col < num_color_basis_vectors; ++col) {
for (int row = 0; row < num_vertices_color * 3; ++row) {
float value = 0.0f;
file.read(reinterpret_cast<char*>(&value), 4);
unnormalised_pca_basis_color.at<float>(row, col) = value;
}
}
// Read the colour eigenvalues:
Mat eigenvalues_color(num_color_basis_vectors, 1, CV_32FC1);
for (int i = 0; i < num_color_basis_vectors; ++i) {
float value = 0.0f;
file.read(reinterpret_cast<char*>(&value), 4);
eigenvalues_color.at<float>(i, 0) = value;
}
// We read the unnormalised basis from the file. Now let's normalise it and store the normalised basis separately.
Mat normalised_pca_basis_color = morphablemodel::normalise_pca_basis(unnormalised_pca_basis_color, eigenvalues_color);
morphablemodel::PcaModel color_model(mean_color, normalised_pca_basis_color, eigenvalues_color, triangle_list);
file.close();
if (shape_model.get_data_dimension() / 3 != texture_coordinates.size())
{
std::cout << "Warning: PCA shape model's data dimension is different from the number of texture coordinates given. The converted model is still saved, but most likely not work correctly for texturing." << std::endl;
}
morphablemodel::MorphableModel morphable_model(shape_model, color_model, texture_coordinates);
morphablemodel::save_model(morphable_model, outputfile.string());
cout << "Saved eos .bin model as " << outputfile.string() << "." << endl;
return EXIT_SUCCESS;
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment