Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
E
eos
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Richard Torenvliet
eos
Commits
c8dc5ac4
Commit
c8dc5ac4
authored
8 years ago
by
Patrik Huber
Browse files
Options
Downloads
Patches
Plain Diff
Added Matlab script to convert the BFM to cereal-readable json
parent
c31f39c2
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
share/convert_bfm2009_to_json.m
+98
-0
98 additions, 0 deletions
share/convert_bfm2009_to_json.m
with
98 additions
and
0 deletions
share/convert_bfm2009_to_json.m
0 → 100644
+
98
−
0
View file @
c8dc5ac4
% Converts the 2009 Basel Face Model (BFM, [1]) to a json file that can be
% read by the eos cereal importer. The json-to-cereal-binary app can
% subsequently be used to generate a small eos .bin file.
%
% [1]: A 3D Face Model for Pose and Illumination Invariant Face
% Recognition, P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vetter,
% AVSS 2009.
% http://faces.cs.unibas.ch/bfm/main.php?nav=1-0&id=basel_face_model
%
% Notes:
% - The script takes quite a while to run (>= 10 minutes)
% - Produces quite unoptimised json (and a large file). Check with cereal
% documentation if that can be improved.
%
% Developer notes:
% - The BFM data type is single, SFM is double? Does json make a difference?
% - Sort out (un)normalised basis, which one is stored in the BFM?
% - Domains:
% Colour: BFM: [0, 255], SFM: [0, 1].
% Shape: BFM: in mm (e.g. 50000), SFM: in cm, e.g. 50.
% - Texture coordinates (model.texture_coordinates) would be saved in the
% same way as triangle_list, but the BFM doesn't have any.
% - BFM Matlab file contains the "unnormalised", orthonormal bases (as do
% the Surrey .scm files).
%
function
[]
=
convert_bfm2009_to_json
(
bfm_file
,
json_out_file
)
if
(
~
exist
(
'bfm_file'
,
'var'
))
bfm_file
=
'D:/Github/data/bfm/PublicMM1/01_MorphableModel.mat'
;
end
if
(
~
exist
(
'json_out_file'
,
'var'
))
json_out_file
=
'bfm.json'
;
end
bfm
=
load
(
bfm_file
);
% Leave 'nt' on the default. This is only to produce a small output model
% for testing purposes. It'll result in only part of the mesh.
nt
=
size
(
bfm
.
shapeMU
,
1
);
% num triangles times 3
nb
=
size
(
bfm
.
shapePC
,
2
);
model
.
cereal_class_version
=
0
;
model
.
shape_model
.
mean
.
data
=
bfm
.
shapeMU
(
1
:
nt
);
model
.
shape_model
.
normalised_pca_basis
.
data
=
normalise_pca_basis
(
bfm
.
shapePC
(
1
:
nt
,
1
:
nb
),
bfm
.
shapeEV
(
1
:
nb
));
model
.
shape_model
.
unnormalised_pca_basis
.
data
=
bfm
.
shapePC
(
1
:
nt
,
1
:
nb
);
model
.
shape_model
.
eigenvalues
.
data
=
bfm
.
shapeEV
(
1
:
nb
);
model
.
shape_model
.
triangle_list
=
{};
% will be populated below
model
.
color_model
.
mean
.
data
=
bfm
.
texMU
(
1
:
nt
);
model
.
color_model
.
normalised_pca_basis
.
data
=
normalise_pca_basis
(
bfm
.
texPC
(
1
:
nt
,
1
:
nb
),
bfm
.
texEV
(
1
:
nb
));
model
.
color_model
.
unnormalised_pca_basis
.
data
=
bfm
.
texPC
(
1
:
nt
,
1
:
nb
);
model
.
color_model
.
eigenvalues
.
data
=
bfm
.
texEV
(
1
:
nb
);
model
.
color_model
.
triangle_list
=
{};
% will be populated below
model
.
texture_coordinates
=
{};
% the BFM doesn't have any texcoords
model
.
shape_model
.
mean
.
data
=
model
.
shape_model
.
mean
.
data
/
1000
;
model
.
color_model
.
mean
.
data
=
model
.
color_model
.
mean
.
data
/
255
;
% Divide the basis? The Eigenvectors?
% For the normalised basis, divide before or after the normalisation?
for
i
=
1
:
length
(
bfm
.
tl
)
v0
=
bfm
.
tl
(
i
,
1
)
-
1
;
v1
=
bfm
.
tl
(
i
,
2
)
-
1
;
v2
=
bfm
.
tl
(
i
,
3
)
-
1
;
if
(
v0
>=
nt
/
3
||
v1
>=
nt
/
3
||
v2
>=
nt
/
3
)
continue
;
end
t
.
value0
=
v0
;
t
.
value1
=
v1
;
t
.
value2
=
v2
;
model
.
shape_model
.
triangle_list
{
i
}
=
t
;
model
.
color_model
.
triangle_list
{
i
}
=
t
;
end
bfm_json
=
savejson
(
'morphable_model'
,
model
,
json_out_file
);
end
% Taken 1:1 from include/eos/morphablemodel/PcaModel.hpp:
%
% * Takes an unnormalised PCA basis matrix (a matrix consisting
% * of the eigenvectors and normalises it, i.e. multiplies each
% * eigenvector by the square root of its corresponding
% * eigenvalue.
% *
% * @param[in] unnormalised_basis An unnormalised PCA basis matrix.
% * @param[in] eigenvalues A row or column vector of eigenvalues.
% * @return The normalised PCA basis matrix.
function
[
normalised_basis
]
=
normalise_pca_basis
(
unnormalised_basis
,
eigenvalues
)
normalised_basis
=
zeros
(
size
(
unnormalised_basis
));
for
i
=
1
:
length
(
eigenvalues
)
sqrt_of_eigenvalues
(
i
)
=
sqrt
(
eigenvalues
(
i
));
end
% Normalise the basis: We multiply each eigenvector (i.e. each column) with the square root of its corresponding eigenvalue
for
basis
=
1
:
size
(
unnormalised_basis
,
2
)
normalised_eigenvector
=
unnormalised_basis
(:,
basis
)
.*
sqrt_of_eigenvalues
(
basis
);
normalised_basis
(:,
basis
)
=
normalised_eigenvector
;
end
end
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment