Skip to content
Snippets Groups Projects
Commit 4ec5e910 authored by Patrik Huber's avatar Patrik Huber
Browse files

Initial version of keyframe selection and weighted mean fusion

parent 3aa61677
No related branches found
No related tags found
No related merge requests found
......@@ -98,6 +98,7 @@ set(HEADERS
${CMAKE_CURRENT_SOURCE_DIR}/include/eos/render/Rasterizer.hpp
${CMAKE_CURRENT_SOURCE_DIR}/include/eos/render/FragmentShader.hpp
${CMAKE_CURRENT_SOURCE_DIR}/include/eos/render/detail/Vertex.hpp
${CMAKE_CURRENT_SOURCE_DIR}/include/eos/video/Keyframe.hpp
)
add_library(eos INTERFACE)
......
......@@ -22,3 +22,8 @@
* @namespace eos::render
* @brief Software rendering and texture extraction functionality.
*/
/**
* @namespace eos::video
* @brief Video keyframe extraction and fusion.
*/
/*
* eos - A 3D Morphable Model fitting library written in modern C++11/14.
*
* File: include/eos/video/Keyframe.hpp
*
* Copyright 2016, 2017 Patrik Huber
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#ifndef KEYFRAME_HPP_
#define KEYFRAME_HPP_
#include "eos/fitting/FittingResult.hpp"
#include "eos/fitting/RenderingParameters.hpp"
#include "eos/morphablemodel/Blendshape.hpp"
#include "eos/morphablemodel/MorphableModel.hpp"
#include "opencv2/core/core.hpp"
namespace eos {
namespace video {
/**
* @brief A keyframe selected by the fitting algorithm.
*
* Contains the original frame, all necessary fitting parameters, and a score.
*/
struct Keyframe
{
float score; // = 0.0f?
cv::Mat frame;
fitting::FittingResult fitting_result;
};
/**
* @brief A keyframe selection that selects keyframes according to yaw pose and score.
*
* Separates the +-90 yaw pose range into 20 intervals (i.e. 90 to 70, ..., -10 to 10, ...), and puts frames
* into each bin, until full. Replaces keyframes with better frames if the score is higher than that of
* current keyframes.
*
* The yaw pose bins are currently hard-coded (9 bins, 20 intervals).
*/
struct PoseBinningKeyframeSelector
{
public:
PoseBinningKeyframeSelector(int frames_per_bin = 2) : frames_per_bin(frames_per_bin)
{
bins.resize(num_yaw_bins);
};
bool try_add(float frame_score, cv::Mat image, const fitting::FittingResult& fitting_result)
{
// Determine whether to add or not:
auto yaw_angle = glm::degrees(glm::yaw(fitting_result.rendering_parameters.get_rotation()));
auto idx = angle_to_index(yaw_angle);
bool add_frame = false;
if (bins[idx].size() < frames_per_bin) // always add when we don't have enough frames
add_frame =
true; // definitely adding - we wouldn't have to go through the for-loop on the next line.
for (auto&& f : bins[idx])
{
if (frame_score > f.score)
add_frame = true;
}
if (!add_frame)
{
return false;
}
// Add the keyframe:
bins[idx].push_back(video::Keyframe{frame_score, image, fitting_result});
if (bins[idx].size() > frames_per_bin)
{
// need to remove the lowest one:
std::sort(std::begin(bins[idx]), std::end(bins[idx]),
[](const auto& lhs, const auto& rhs) { return lhs.score > rhs.score; });
bins[idx].resize(frames_per_bin);
}
return true;
};
// Returns the keyframes as a vector.
std::vector<Keyframe> get_keyframes() const
{
std::vector<Keyframe> keyframes;
for (auto&& b : bins)
{
for (auto&& f : b)
{
keyframes.push_back(f);
}
}
return keyframes;
};
private:
using BinContent = std::vector<Keyframe>;
std::vector<BinContent> bins;
const int num_yaw_bins = 9;
int frames_per_bin;
// Converts a given yaw angle to an index in the internal bins vector.
// Assumes 9 bins and 20 intervals.
static std::size_t angle_to_index(float yaw_angle)
{
if (yaw_angle <= -70.f)
return 0;
if (yaw_angle <= -50.f)
return 1;
if (yaw_angle <= -30.f)
return 2;
if (yaw_angle <= -10.f)
return 3;
if (yaw_angle <= 10.f)
return 4;
if (yaw_angle <= 30.f)
return 5;
if (yaw_angle <= 50.f)
return 6;
if (yaw_angle <= 70.f)
return 7;
return 8;
};
};
/**
* @brief Extracts texture from each keyframe and merges them using a weighted mean.
*
* Uses the view angle as weighting.
*
* Note 1: Would be nice to eventually return a 4-channel texture map, with a sensible weight in the 4th
* channel (i.e. the max of all weights for a given pixel).
*
* Note 2: On each call to this, it generates all isomaps. This is quite time-consuming (and we could compute
* the weighted mean incrementally). But caching them is not trivial (maybe with a hashing or comparing the
* cv::Mat frame data* member?).
* On the other hand, for the more complex merging techniques (super-res, involving ceres, or a median
* cost-func?), there might be no caching possible anyway and we will recompute the merged isomap from scratch
* each time anyway, but not by first extracting all isomaps - instead we would just do a lookup of the
* required pixel value(s) in the original image.
*
* // struct KeyframeMerger {};
*
* @param[in] keyframes The keyframes that will be merged.
* @param[in] morphable_model The Morphable Model with which the keyframes have been fitted.
* @param[in] blendshapes The blendshapes with which the keyframes have been fitted.
* @return Merged texture map (isomap), 3-channel uchar.
*/
cv::Mat merge_weighted_mean(const std::vector<Keyframe>& keyframes,
const morphablemodel::MorphableModel& morphable_model,
const std::vector<morphablemodel::Blendshape>& blendshapes)
{
assert(keyframes.size() >= 1);
using cv::Mat;
using std::vector;
vector<Mat> isomaps;
for (const auto& frame_data : keyframes)
{
const Mat shape =
morphable_model.get_shape_model().draw_sample(frame_data.fitting_result.pca_shape_coefficients) +
morphablemodel::to_matrix(blendshapes) * Mat(frame_data.fitting_result.blendshape_coefficients);
const auto mesh =
morphablemodel::sample_to_mesh(shape, {}, morphable_model.get_shape_model().get_triangle_list(),
{}, morphable_model.get_texture_coordinates());
const Mat affine_camera_matrix = fitting::get_3x4_affine_camera_matrix(
frame_data.fitting_result.rendering_parameters, frame_data.frame.cols, frame_data.frame.rows);
const Mat isomap = render::extract_texture(mesh, affine_camera_matrix, frame_data.frame, true,
render::TextureInterpolation::NearestNeighbour, 1024);
isomaps.push_back(isomap);
}
// Now do the actual merging:
Mat r = Mat::zeros(isomaps[0].rows, isomaps[0].cols, CV_32FC1);
Mat g = Mat::zeros(isomaps[0].rows, isomaps[0].cols, CV_32FC1);
Mat b = Mat::zeros(isomaps[0].rows, isomaps[0].cols, CV_32FC1);
Mat accumulated_weight = Mat::zeros(isomaps[0].rows, isomaps[0].cols, CV_32FC1);
// Currently, this just uses the weights in the alpha channel for weighting - they contain only the
// view-angle. We should use the keyframe's score as well. Plus the area of the source triangle.
for (auto&& isomap : isomaps)
{
vector<Mat> channels;
cv::split(isomap, channels);
// channels[0].convertTo(channels[0], CV_32FC1);
// We could avoid this explicit temporary, but then we'd have to convert both matrices
// to CV_32FC1 first - and manually multiply with 1/255. Not sure which one is faster.
// If we do it like this, the add just becomes '+=' - so I think it's fine like this.
// The final formula is:
// b += chan_0 * alpha * 1/255; (and the same for g and r respectively)
Mat weighted_b, weighted_g, weighted_r;
// // we scale the weights from [0, 255] to [0, 1]:
cv::multiply(channels[0], channels[3], weighted_b, 1 / 255.0, CV_32FC1);
cv::multiply(channels[1], channels[3], weighted_g, 1 / 255.0, CV_32FC1);
cv::multiply(channels[2], channels[3], weighted_r, 1 / 255.0, CV_32FC1);
b += weighted_b;
g += weighted_g;
r += weighted_r;
channels[3].convertTo(channels[3], CV_32FC1); // needed for the '/ 255.0f' below to work
cv::add(accumulated_weight, channels[3] / 255.0f, accumulated_weight, cv::noArray(), CV_32FC1);
}
b = b.mul(1.0 / (accumulated_weight)); // divide by number of frames used too?
g = g.mul(1.0 / (accumulated_weight));
r = r.mul(1.0 / (accumulated_weight));
// Let's return accumulated_weight too: Normalise by num_isomaps * 255 (=maximum weight)
// This sets the returned weight to the average from all the isomaps. Maybe the maximum would make more
// sense? => Not returning anything for now.
// accumulated_weight = (accumulated_weight / isomaps.size()) * 255;
Mat merged_isomap;
cv::merge({b, g, r}, merged_isomap);
merged_isomap.convertTo(merged_isomap, CV_8UC3);
return merged_isomap;
};
/**
* @brief Computes the variance of laplacian of the given image or patch.
*
* This should compute the variance of the laplacian of a given image or patch, according to the 'LAPV'
* algorithm of Pech 2000.
* It is used as a focus or blurriness measure, i.e. to assess the quality of the given patch.
*
* @param[in] image Input image or patch.
* @return The computed variance of laplacian score.
*/
double variance_of_laplacian(const cv::Mat& image)
{
cv::Mat laplacian;
cv::Laplacian(image, laplacian, CV_64F);
cv::Scalar mu, sigma;
cv::meanStdDev(laplacian, mu, sigma);
double focus_measure = sigma.val[0] * sigma.val[0];
return focus_measure;
};
} /* namespace video */
} /* namespace eos */
#endif /* KEYFRAME_HPP_ */
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment