Skip to content
Snippets Groups Projects
Commit 135cd72f authored by Patrik Huber's avatar Patrik Huber
Browse files

Added a parameter to the linear shape fitting to start it from a different face than the mean-face

This is used for example when we fit blendshapes and want to fit the PCA shape given current blendshape parameters.
parent 0698a889
No related branches found
No related tags found
No related merge requests found
......@@ -50,13 +50,14 @@ namespace eos {
* @param[in] affine_camera_matrix A 3x4 affine camera matrix from model to screen-space (should probably be of type CV_32FC1 as all our calculations are done with float).
* @param[in] landmarks 2D landmarks from an image to fit the model to.
* @param[in] vertex_ids The vertex ids in the model that correspond to the 2D points.
* @param[in] base_face The base or reference face from where the fitting is started. Usually this would be the models mean face.
* @param[in] lambda The regularisation parameter (weight of the prior towards the mean).
* @param[in] num_coefficients_to_fit How many shape-coefficients to fit (all others will stay 0). Not tested thoroughly.
* @param[in] detector_standard_deviation The standard deviation of the 2D landmarks given (e.g. of the detector used), in pixels.
* @param[in] model_standard_deviation The standard deviation of the 3D vertex points in the 3D model, projected to 2D (so the value is in pixels).
* @return The estimated shape-coefficients (alphas).
*/
inline std::vector<float> fit_shape_to_landmarks_linear(morphablemodel::MorphableModel morphable_model, cv::Mat affine_camera_matrix, std::vector<cv::Vec2f> landmarks, std::vector<int> vertex_ids, float lambda=3.0f, boost::optional<int> num_coefficients_to_fit=boost::optional<int>(), boost::optional<float> detector_standard_deviation=boost::optional<float>(), boost::optional<float> model_standard_deviation=boost::optional<float>())
inline std::vector<float> fit_shape_to_landmarks_linear(morphablemodel::MorphableModel morphable_model, cv::Mat affine_camera_matrix, std::vector<cv::Vec2f> landmarks, std::vector<int> vertex_ids, cv::Mat base_face, float lambda=3.0f, boost::optional<int> num_coefficients_to_fit=boost::optional<int>(), boost::optional<float> detector_standard_deviation=boost::optional<float>(), boost::optional<float> model_standard_deviation=boost::optional<float>())
{
using cv::Mat;
assert(landmarks.size() == vertex_ids.size());
......@@ -101,7 +102,8 @@ inline std::vector<float> fit_shape_to_landmarks_linear(morphablemodel::Morphabl
// The mean, with an added homogeneous coordinate (x_1, y_1, z_1, 1, x_2, ...)^t
Mat v_bar = Mat::ones(4 * num_landmarks, 1, CV_32FC1);
for (int i = 0; i < num_landmarks; ++i) {
cv::Vec4f model_mean = morphable_model.get_shape_model().get_mean_at_point(vertex_ids[i]);
//cv::Vec4f model_mean = morphable_model.get_shape_model().get_mean_at_point(vertex_ids[i]);
cv::Vec4f model_mean(base_face.at<float>(vertex_ids[i] * 3), base_face.at<float>(vertex_ids[i] * 3 + 1), base_face.at<float>(vertex_ids[i] * 3 + 2), 1.0f);
v_bar.at<float>(4 * i, 0) = model_mean[0];
v_bar.at<float>((4 * i) + 1, 0) = model_mean[1];
v_bar.at<float>((4 * i) + 2, 0) = model_mean[2];
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment