Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
U
uva
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Taddeüs Kroes
uva
Commits
feedb9d1
Commit
feedb9d1
authored
Nov 27, 2011
by
Taddeus Kroes
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
funclang series4: Improved assigmment 10.
parent
1f71a51d
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
40 additions
and
52 deletions
+40
-52
funclang-taddeus/series4/ass10.ml
funclang-taddeus/series4/ass10.ml
+40
-52
No files found.
funclang-taddeus/series4/ass10.ml
View file @
feedb9d1
type
arithOp
=
Plus
of
int
*
int
|
Minus
of
int
*
int
|
Times
of
int
*
int
|
Divide
of
int
*
int
|
Modulo
of
int
*
int
type
relOp
=
EQ
of
int
*
int
|
NEQ
of
int
*
int
|
LT
of
int
*
int
|
LTE
of
int
*
int
|
GT
of
int
*
int
|
GTE
of
int
*
int
type
logicOp
=
AND
of
bool
*
bool
|
OR
of
bool
*
bool
type
binOp
=
ArithOp
of
arithOp
|
RelOp
of
relOp
|
LogicOp
of
logicOp
type
monOp
=
UnaryMinus
of
int
|
Negation
of
bool
type
const
=
BoolConst
of
bool
|
IntConst
of
int
type
arithOp
=
Plus
|
Minus
|
Times
|
Divide
|
Modulo
type
relOp
=
Eq
|
Neq
|
Lt
|
Lte
|
Gt
|
Gte
type
logicOp
=
And
|
Or
type
binOp
=
ArithOp
of
arithOp
|
RelOp
of
relOp
|
LogicOp
of
logicOp
type
monOp
=
UnaryMinus
|
Negation
type
const
=
BoolConst
of
bool
|
IntConst
of
int
type
expr
=
Enclosure
of
expr
|
BinOp
of
expr
*
binOp
*
expr
...
...
@@ -40,27 +14,23 @@ type expr =
let
rec
eval_expr
=
let
eval_binOp
=
let
eval_arithOp
=
function
Plus
(
a
,
b
)
->
"("
^
(
string_of_int
a
)
^
" + "
^
(
string_of_int
b
)
|
Minus
(
a
,
b
)
->
"("
^
(
string_of_int
a
)
^
" - "
^
(
string_of_int
b
)
^
")"
|
Times
(
a
,
b
)
->
"("
^
(
string_of_int
a
)
^
" * "
^
(
string_of_int
b
)
^
")"
|
Divide
(
a
,
b
)
->
"("
^
(
string_of_int
a
)
^
" / "
^
(
string_of_int
b
)
^
")"
|
Modulo
(
a
,
b
)
->
"("
^
(
string_of_int
a
)
^
" mod "
^
(
string_of_int
b
)
^
")"
Plus
->
"+"
|
Minus
->
"-"
|
Times
->
"*"
|
Divide
->
"/"
|
Modulo
->
"mod"
in
let
eval_relOp
=
function
E
Q
(
a
,
b
)
->
(
string_of_int
a
)
^
" = "
^
(
string_of_int
b
)
|
N
EQ
(
a
,
b
)
->
(
string_of_int
a
)
^
" != "
^
(
string_of_int
b
)
|
L
T
(
a
,
b
)
->
(
string_of_int
a
)
^
" < "
^
(
string_of_int
b
)
|
L
TE
(
a
,
b
)
->
(
string_of_int
a
)
^
" <= "
^
(
string_of_int
b
)
|
G
T
(
a
,
b
)
->
(
string_of_int
a
)
^
" > "
^
(
string_of_int
b
)
|
G
TE
(
a
,
b
)
->
(
string_of_int
a
)
^
" >= "
^
(
string_of_int
b
)
E
q
->
"="
|
N
eq
->
"!="
|
L
t
->
"<"
|
L
te
->
"<="
|
G
t
->
">"
|
G
te
->
">="
in
let
eval_logicOp
=
function
A
ND
(
a
,
b
)
->
(
string_of_bool
a
)
^
" && "
^
(
string_of_bool
b
)
|
O
R
(
a
,
b
)
->
(
string_of_bool
a
)
^
" || "
^
(
string_of_bool
b
)
A
nd
->
"&&"
|
O
r
->
"||"
in
function
ArithOp
op
->
eval_arithOp
(
op
)
...
...
@@ -68,8 +38,8 @@ let rec eval_expr =
|
LogicOp
op
->
eval_logicOp
(
op
)
in
let
eval_monOp
=
function
UnaryMinus
i
->
"-"
^
string_of_int
i
|
Negation
b
->
"!"
^
string_of_bool
b
UnaryMinus
->
"-"
|
Negation
->
"!"
in
let
eval_const
=
function
IntConst
i
->
string_of_int
i
...
...
@@ -77,7 +47,25 @@ let rec eval_expr =
in
function
Enclosure
e
->
"("
^
eval_expr
(
e
)
^
")"
|
BinOp
(
e1
,
op
,
e2
)
->
eval_expr
(
e1
)
^
eval_binOp
(
op
)
^
eval_expr
(
e2
)
|
BinOp
(
e1
,
op
,
e2
)
->
eval_expr
(
e1
)
^
" "
^
eval_binOp
(
op
)
^
" "
^
eval_expr
(
e2
)
|
MonOp
(
op
,
e
)
->
eval_monOp
(
op
)
^
eval_expr
(
e
)
|
Id
id
->
id
|
Const
c
->
eval_const
(
c
)
;;
(* (a) *)
print_endline
(
eval_expr
(
Enclosure
(
Id
"a"
)));;
(* -a *)
print_endline
(
eval_expr
(
MonOp
(
UnaryMinus
,
Id
"a"
)));;
(* a - b *)
print_endline
(
eval_expr
(
BinOp
(
Id
"a"
,
ArithOp
Minus
,
Id
"b"
)));;
(* a * (-b + 1) *)
let
a_times
b
=
BinOp
(
Id
"a"
,
ArithOp
Times
,
b
)
in
let
uminus
a
=
MonOp
(
UnaryMinus
,
a
)
in
let
plus
a
b
=
BinOp
(
a
,
ArithOp
Plus
,
b
)
in
let
one
=
Const
(
IntConst
1
)
in
print_endline
(
eval_expr
(
a_times
(
Enclosure
(
plus
(
uminus
(
Id
"b"
))
one
))));;
(* a = b && c *)
let
b_and_c
=
BinOp
(
Id
"b"
,
LogicOp
And
,
Id
"c"
)
in
print_endline
(
eval_expr
(
BinOp
(
Id
"a"
,
RelOp
Eq
,
b_and_c
)));;
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment