Commit 95bc6bd9 authored by Taddeüs Kroes's avatar Taddeüs Kroes

improc ass4: Added proof of separability Gaussian derivatives.

parent 8137d202
......@@ -154,8 +154,16 @@ We can show analytically that all derivatives of the 2D Gaussian function
are separable as well:
\begin{table}[H]
\begin{tabular}{rl}
$ $ & $= $ \\
\begin{tabular}{rll}
$ \frac{\delta}{\delta x} \frac{\delta}{\delta y} G_{2D}(x, y)$
& $= \frac{\delta}{\delta x} (\frac{\delta}{\delta y} (G_{1D}(x)
\cdot G_{1D}(y)))$ & $G_{2D}(x, y) = G_{1D}(x) \cdot G_{1D}(y)$ is
given \\
& $= \frac{\delta}{\delta x} (G_{1D}(x) \cdot
\frac{\delta}{\delta y} G_{1D}(y))$ & because $G_{1D}(x)$ is
constant with respect to $y$ \\
& $= \frac{\delta}{\delta x} G_{1D}(x) \cdot
\frac{\delta}{\delta y} G_{1D}(y)$ & \\
\end{tabular}
\end{table}
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment