Commit 94f437b9 authored by Taddes Kroes's avatar Taddes Kroes

improc ass4: Fixed buggy figure labels.

parent e5856ab2
...@@ -88,10 +88,10 @@ The result of the \texttt{Gauss} function is shown in figure ...@@ -88,10 +88,10 @@ The result of the \texttt{Gauss} function is shown in figure
Gaussian kernel and the convolved image. Gaussian kernel and the convolved image.
\begin{figure}[H] \begin{figure}[H]
\label{fig:gauss-2d}
\hspace{-5cm} \hspace{-5cm}
\includegraphics[scale=.6]{gauss_2d_5.pdf} \includegraphics[scale=.6]{gauss_2d_5.pdf}
\caption{The result of \texttt{python gauss.py 2d 5}.} \caption{The result of \texttt{python gauss.py 2d 5}.}
\label{fig:gauss-2d}
\end{figure} \end{figure}
\subsection{Measuring Performance} \subsection{Measuring Performance}
...@@ -102,11 +102,11 @@ $\sigma = 1,2,3,5,7,9,11,15,19$, the results are in figure ...@@ -102,11 +102,11 @@ $\sigma = 1,2,3,5,7,9,11,15,19$, the results are in figure
$\mathcal{O}(\sigma^2)$. $\mathcal{O}(\sigma^2)$.
\begin{figure}[H] \begin{figure}[H]
\label{fig:times-2d}
\center \center
\includegraphics[scale=.5]{gauss_times_2d.pdf} \includegraphics[scale=.5]{gauss_times_2d.pdf}
\caption{The result of \texttt{python gauss.py timer 2d 5} (so, each \caption{The result of \texttt{python gauss.py timer 2d 5} (so, each
timing has been repeated 5 times and then averaged).} timing has been repeated 5 times and then averaged).}
\label{fig:times-2d}
\end{figure} \end{figure}
\section{Separable Gaussian Convolution} \section{Separable Gaussian Convolution}
...@@ -140,10 +140,10 @@ computational complexity of $\mathcal{O}(\sigma)$, which is much faster than ...@@ -140,10 +140,10 @@ computational complexity of $\mathcal{O}(\sigma)$, which is much faster than
the 2D convolution (certainly for higher scales). the 2D convolution (certainly for higher scales).
\begin{figure}[H] \begin{figure}[H]
\label{fig:times-1d}
\center \center
\includegraphics[scale=.5]{gauss_times_1d.pdf} \includegraphics[scale=.5]{gauss_times_1d.pdf}
\caption{The result of \texttt{python gauss.py timer 1d 50}.} \caption{The result of \texttt{python gauss.py timer 1d 50}.}
\label{fig:times-1d}
\end{figure} \end{figure}
\section{Gaussian Derivatives} \section{Gaussian Derivatives}
...@@ -172,10 +172,10 @@ The separability property is used in the \texttt{gD} function, by calling the ...@@ -172,10 +172,10 @@ The separability property is used in the \texttt{gD} function, by calling the
yields the 2-jet of scale 4 of the cameraman image in figure \ref{fig:jet}. yields the 2-jet of scale 4 of the cameraman image in figure \ref{fig:jet}.
\begin{figure}[H] \begin{figure}[H]
\label{fig:jet}
\center \center
\includegraphics[scale=.4]{jet_4.pdf} \includegraphics[scale=.4]{jet_4.pdf}
\caption{The result of \texttt{python gauss.py jet 4}.} \caption{The result of \texttt{python gauss.py jet 4}.}
\label{fig:jet}
\end{figure} \end{figure}
\section{Canny Edge detector} \section{Canny Edge detector}
...@@ -205,10 +205,10 @@ edge detection on the cameraman image using a scale of 2, a lower threshold of ...@@ -205,10 +205,10 @@ edge detection on the cameraman image using a scale of 2, a lower threshold of
20 and a higher threshold of 60, can be viewed in figure \ref{fig:canny}. 20 and a higher threshold of 60, can be viewed in figure \ref{fig:canny}.
\begin{figure}[H] \begin{figure}[H]
\label{fig:canny}
\hspace{-5cm} \hspace{-5cm}
\includegraphics[scale=.6]{canny_2_20_60.pdf} \includegraphics[scale=.6]{canny_2_20_60.pdf}
\caption{The result of \texttt{python canny.py 2 20 60}.} \caption{The result of \texttt{python canny.py 2 20 60}.}
\label{fig:canny}
\end{figure} \end{figure}
\end{document} \end{document}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment