Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
U
uva
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Taddeüs Kroes
uva
Commits
45ce1a1b
Commit
45ce1a1b
authored
Oct 06, 2011
by
Taddeüs Kroes
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
ImProc ass3: Added initial implementation of back projection.
parent
1414b90a
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
106 additions
and
5 deletions
+106
-5
improc/ass3/back_projection.png
improc/ass3/back_projection.png
+0
-0
improc/ass3/back_projection.py
improc/ass3/back_projection.py
+92
-0
improc/ass3/intersect.py
improc/ass3/intersect.py
+14
-5
No files found.
improc/ass3/back_projection.png
0 → 100644
View file @
45ce1a1b
53.3 KB
improc/ass3/back_projection.py
0 → 100644
View file @
45ce1a1b
#!/usr/bin/env python
from
numpy
import
zeros
from
matplotlib.pyplot
import
imread
,
imshow
,
show
from
intersect
import
col2bin
,
domainIterator
,
colHist
,
histogramIntersect
def
D
(
image
,
radius
,
x
,
y
):
"""Get the average value of a circle around a pixel."""
disk_sum
=
0.
pixels
=
0
r_sq
=
radius
**
2
w
,
h
=
image
.
shape
[:
2
]
# Loop to the square that surrounds the circle, and check if the pixel
# is inside the disk
for
dx
in
xrange
(
-
radius
,
radius
+
1
):
for
dy
in
xrange
(
-
radius
,
radius
+
1
):
cx
=
x
+
dx
cy
=
y
+
dy
if
cx
>=
0
and
cy
>=
0
and
cx
<
w
and
cy
<
h
\
and
dx
**
2
+
dy
**
2
<
r_sq
:
disk_sum
+=
image
[
cx
,
cy
]
pixels
+=
1
return
disk_sum
/
pixels
if
pixels
else
0
def
convolution
(
image
,
radius
):
"""Calculate the convolution of an image with a specified disk radius."""
c
=
zeros
(
image
.
shape
)
for
x
,
y
in
domainIterator
(
image
):
c
[
x
,
y
]
=
D
(
image
,
radius
,
x
,
y
)
return
c
def
hbp
(
image
,
environment
,
bins
,
model
,
radius
):
"""Create the histogram back projection of two images."""
# Create image histograms
print
'Creating histograms...'
M
=
colHist
(
image
,
bins
,
'rgb'
)
I
=
colHist
(
environment
,
bins
,
'rgb'
)
# Create ratio histogram
R
=
zeros
(
I
.
shape
)
for
c
in
domainIterator
(
R
,
3
):
if
(
I
[
c
]
!=
0
).
all
():
R
[
c
]
=
M
[
c
]
/
I
[
c
]
# Create back projection
print
'Creating back projection...'
b
=
zeros
(
environment
.
shape
)
use
=
environment
*
bins
if
model
==
'rgb'
:
use
/=
255
elif
model
==
'hsv'
:
# TODO: implement HSV color model
pass
for
p
in
domainIterator
(
b
):
b
[
p
]
=
min
(
R
[
col2bin
(
use
[
p
])],
1
)
# Create convolution to create a peak value
print
'Creating convolution...'
return
convolution
(
b
,
radius
)
def
loc
(
x
,
y
):
pass
def
find_image
(
image
,
environment
,
bins
,
model
,
radius
):
"""Find the location of the peak value of a back projection histogram."""
b
=
hbp
(
image
,
environment
,
bins
,
model
,
radius
)
return
loc
(
environment
,
b
.
max
())
if
__name__
==
'__main__'
:
print
'Reading images...'
waldo
=
imread
(
'waldo.tiff'
)
env
=
imread
(
'waldo_env.tiff'
)
p
=
hbp
(
waldo
,
env
,
[
8
]
*
3
,
'rgb'
,
5
)
print
'done'
imshow
(
p
,
cmap
=
'gray'
)
# Draw a rectangle around the found center pixel
#x, y = find_image(waldo, env, [8] * 3, 'rgb')
#w, h = waldo.shape[:2]
#plot([x - w / 2, x + w / 2], [y - h / 2, y + h / 2], 'r-')
#imshow(env)
show
()
improc/ass3/intersect.py
View file @
45ce1a1b
...
...
@@ -6,11 +6,17 @@ def col2bin(color):
"""Get the histogram bin coordinates of a color."""
return
tuple
(
map
(
lambda
x
:
round
(
x
-
1
),
color
))
def
domainIterator
(
image
):
"""Pixel iterator for colHist."""
def
domainIterator
(
image
,
dim
=
2
):
"""Pixel iterator for arrays of with 2 or 3 dimensions."""
if
dim
==
2
:
for
x
in
xrange
(
image
.
shape
[
0
]):
for
y
in
xrange
(
image
.
shape
[
1
]):
yield
x
,
y
elif
dim
==
3
:
for
x
in
xrange
(
image
.
shape
[
0
]):
for
y
in
xrange
(
image
.
shape
[
1
]):
for
z
in
xrange
(
image
.
shape
[
2
]):
yield
x
,
y
,
z
def
colHist
(
image
,
bins
,
model
):
"""Create the color histogram of an image."""
...
...
@@ -20,7 +26,10 @@ def colHist(image, bins, model):
if
model
==
'rgb'
:
use
/=
255
elif
model
==
'hsv'
:
# TODO: implement HSV color model
pass
else
:
raise
ValueError
(
'Color model "%s" is not supported.'
%
model
)
for
p
in
domainIterator
(
image
):
h
[
col2bin
(
use
[
p
])]
+=
1
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment