Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
U
uva
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Taddeüs Kroes
uva
Commits
13cc25ab
Commit
13cc25ab
authored
Nov 04, 2011
by
Sander Mathijs van Veen
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
improc: Fixed reference labels.
parent
5f676a7c
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
6 additions
and
6 deletions
+6
-6
improc/ass4/report/report.tex
improc/ass4/report/report.tex
+6
-6
No files found.
improc/ass4/report/report.tex
View file @
13cc25ab
...
...
@@ -88,10 +88,10 @@ The result of the \texttt{Gauss} function is shown in figure
Gaussian kernel and the convolved image.
\begin{figure}
[H]
\label
{
fig:gauss-2d
}
\hspace
{
-5cm
}
\includegraphics
[scale=.6]
{
gauss
_
2d
_
5.pdf
}
\caption
{
The result of
\texttt
{
python gauss.py 2d 5
}
.
}
\label
{
fig:gauss-2d
}
\end{figure}
\subsection
{
Measuring Performance
}
...
...
@@ -102,11 +102,11 @@ $\sigma = 1,2,3,5,7,9,11,15,19$, the results are in figure
$
\mathcal
{
O
}
(
\sigma
^
2
)
$
.
\begin{figure}
[H]
\label
{
fig:times-2d
}
\center
\includegraphics
[scale=.5]
{
gauss
_
times
_
2d.pdf
}
\caption
{
The result of
\texttt
{
python gauss.py timer 2d 5
}
(so, each
timing has been repeated 5 times and then averaged).
}
\label
{
fig:times-2d
}
\end{figure}
\section
{
Separable Gaussian Convolution
}
...
...
@@ -140,10 +140,10 @@ computational complexity of $\mathcal{O}(\sigma)$, which is much faster than
the 2D convolution (certainly for higher scales).
\begin{figure}
[H]
\label
{
fig:times-1d
}
\center
\includegraphics
[scale=.5]
{
gauss
_
times
_
1d.pdf
}
\caption
{
The result of
\texttt
{
python gauss.py timer 1d 50
}
.
}
\label
{
fig:times-1d
}
\end{figure}
\section
{
Gaussian Derivatives
}
...
...
@@ -172,10 +172,10 @@ The separability property is used in the \texttt{gD} function, by calling the
yields the 2-jet of the cameraman image in figure
\ref
{
fig:jet
}
.
\begin{figure}
[H]
\label
{
fig:jet
}
\center
\includegraphics
[scale=.4]
{
jet
_
3.pdf
}
\caption
{
The result of
\texttt
{
python gauss.py jet 3
}
.
}
\label
{
fig:jet
}
\end{figure}
\section
{
Canny Edge detector
}
...
...
@@ -205,10 +205,10 @@ edge detection on the cameraman image using a scale of 2, a lower threshold of
20 and a higher threshold of 60, can be viewed in figure
\ref
{
fig:canny
}
.
\begin{figure}
[H]
\label
{
fig:canny
}
\hspace
{
-5cm
}
\includegraphics
[scale=.6]
{
canny
_
2
_
20
_
60.pdf
}
\caption
{
The result of
\texttt
{
python canny.py 2 20 60
}
.
}
\label
{
fig:canny
}
\end{figure}
\end{document}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment