
Computer Graphics – Lab Assignment

Triangle Rasterization

1 Introduction

Modern graphics hardware is capable of drawing millions of triangles per second.
The process in which this is done is called rasterization and the exact details of
the algorithms used by companies like Nvidia or ATI for rasterization and other
3D rendering operations are mostly kept secret, so as not to give the competition
an advantage.

In this assignment you’ll implement the triangle rasterization method as
described in the book of Shirley et.al., Chapter 3 and specifically Section 3.6.

2 Framework

The framework for this assignment will open a window that shows the output
of the rasterization (or at least, after you have implemented it...).

It provides a method PutPixel(x, y, r, g, b) with which the color of a
single pixel can be set. The x and y values are the (integer) coordinates of the
pixel to be set, while the r, g and b values determine the pixel’s color (in the
range 0 up to 255).

Note that the origin – the pixel with coordinates (0,0) – is at the lower-left
of the screen, the X axis points to the right and Y axis points up.

Also note that coordinates of triangle vertices are specified in floating-point
format.

As a single pixel is usually pretty small on the screen the framework by de-
fault draws an enlarged version of the rasterized triangles, where each “triangle
pixel” is drawn using a block of 7x7 screen pixels.

The framework provides two different scenes. The first (default) scene draws
a number of triangles as specified in the file triangles.h. The second mode
draws triangles with random vertex coordinates. This second mode is meant to
test rasterization speed, which is used in the assigment. You can switch between
the two scenes with the ‘1’ and ‘2’ keys.

Other keys available are:

• q – Exit

• z – Toggle zoom

1



• o – Switch between unoptimized and optimization rasterization (see 3.3)

3 Assignment

3.1 Basic rasterization

Implement the basic triangle rasterization algorithm of page 64 by filling in
the function draw triangle() in trirast.c. Do not worry about pixels that
happen to be exactly on triangle edges yet.

A useful trick when implementing your algorithm can be to initially ignore
the color values passed to the function and instead color the pixels drawn using
the barycentric coordinates for the pixel (suitably scaled to cover the range 0
to 255 per color channel).

3.2 Dealing with shared edges

When you’re sure your implementation behaves as it should the next step would
be to add the method described in section 3.6.1 for dealing with pixels exactly
on triangle edges. As noted in the book, the off-screen point method should
ensure that pixels on an edge shared by two triangles are drawn for just one of
the triangles. But as the output image only shows the final pixel color we have
no way of knowing if a pixel’s color was actually set more than once.

We are going to “abuse” the frame buffer for this purpose. Instead of storing
the new pixel color when PutPixel() is executed, we’re going to store the
number of times a given pixel was set using certain colors. This way we can
literally see how many times a pixel was set and detect shared edges where
pixels are not set exactly once.

The framework has a boolean flag color by putpixel count, which you
can toggle with the ‘d’ key (‘d’ for double and/or debug). Alter the function
PutPixel() so that when this flag is set the function uses the frame buffer to
keep track of how many times a pixel’s color was set. To keep things simple you
only have to distinguish three different cases for a pixel:

• No PutPixel() operations yet; color: (0, 0, 0)

• 1 PutPixel(); color: (128, 0, 0)

• 2 or more PutPixel()’s: (255, 0, 0)

Note that the frame buffer’s pixels are initially all black, i.e. (0,0,0).
When you test this “debug mode” you should see shared edges being drawn

twice in your current rasterization implementation.
Add the method described in Section 3.6.1 to draw triangle() and verify

that the shared edges are now handled correctly.

2



3.3 Optimizations

As the book notes on pages 64 and 66 there’s a lot of potential to optimize the
algorithm. We can incrementally compute the values of α, β and γ, instead of
fully computing them for each pixel. We can also skip the innermost loop early
depending on the tests on the α, β and γ values.

Copy the triangle rasterization function you have made so far into the
(empty) function draw triangle optimized(). Then alter this function to add
the optimizations described in the previous paragraph and any others you can
think of.

Check your optimized version against the original one, to make sure the
output of the optimized version is not different from the unoptimized one. You
can switch between triangle rasterization using the unoptimized and optimized
versions using the ‘o’ key.

3.4 Questions

Answer the following questions (put the answers in a text file that you submit
with your code):

1. What factor(s) inherent in the rasterization algorithm used here influence
the speed with which a triangle is drawn?

2. The book notes on page 65 at the bottom that “[...] the test is not perfect
because the line through the edge may also go through the offscreen point
[...]”. How would you handle a situation in which a pixel is exactly on an
edge and the edge runs exactly through the offscreen point?

4 Grading

You can receive up to 3 points for a correct implementation of the basic raster-
ization algorithm.

Addition of the debug mode and correct handling of pixels on triangle edges
can give you up to 2 points.

For a correctly working optimized version of the algorithm you can receive
up to 3 points.

Correct answers to the questions are worth 0.5 point each.
You can get up to one additional point for writing clear and well-commented

code.

3


