Computer Graphics — Lab Assignment
Texture Mapping

November 23, 2010

1 Introduction

This assignment will familiarize you with different aspects of texture mapping.

The provided framework loads texture images from PPM files, a number
of which are provided. The framework also sets up a lot of the OpenGL 2D
texturing state for you. It does not apply texture coordinates for you, which
you will be asked to do that yourself in the assignments below.

A number of keys are available in the framework application. The t toggles
texturing on/off. The key 1 renders the scene in lines/wireframe, p renders the
scene in "normal” polygons. The camera position can be controlled using the
mouse (left button), including zoom (right button). The o key can be used to
switch between different centers of camera rotation, which roughly correspond
to some of the objects in the scene.

The coordinate system used in the framework is as follows: the Y-axis points
upwards. Imagine the X-axis pointing to the right and the Y-axis pointing up
then the Z-axis points towards you. This is a so-called “right-handed” coordi-
nate system.

1.1 Object files

A number of 3D objects is provided in text files, with extension .obj. These
files use a simple format, suitable for editing in a standard text editor. The

Figure 1: The textured house, ground plane, part of the road and skydome

format is line-oriented and any line starting with a # character is considered a
comment line. The files declare one or more vertices and one or more polygons
using these vertices.

Vertices are declared by a single line of the format "v <x> <y> <z>", giving
the coordinates of the vertex. Each declared vertex is given an integer index,
starting at 0.

Polygons are declared using multiple lines. The first line for each polygon is
of the form "p <n> <t>" and lists the number of vertices n in the polygon and
the texture identifier ¢. Both of these are integers. Note that the framework only
supports polygons with 3 or 4 vertices (i.e. triangles and quads), as OpenGL
does not really cope well with polygons with more vertices.

Then follows a line describing the color of the polygon, which is used as
the object color for non-textured displaying. For textured display this color is
combined with the color from the texture to calculate the final color. This line
is of the form "<r> <g> ", with three values in the range [0, 1].

Finally, n lines are given, one for each of the vertices in the polygon. These
lines are of the form "<vi> <s> <t>". Here, vi is the index of a vertex pre-
viously declared and s and ¢ are the texture coordinates to be used for this
vertex. See for example, the file ground.obj, which creates a plane defined by
4 vertices. Note that an assumption is made that all polygons are planar, so
that a polygon normal can be easily calculated by the framework.

The texture identifier is used as an index in the array of OpenGL texture
names, texture names. This array contains the texture names generated at
run-time for each of the loaded texture images. Take a look at function InitGL
in main.c to see how this is handled.

2 Assignments

2.1 Part 1 - Basic texturing
Complete the following tasks:

e In DrawPolylist add a call to glTexCoord2f in the correct place so that
it applies texture coordinates for polygon vertices. See the lecture sheets
on texture mapping for hints and code examples.

e Open the road texture textures/road.ppm in an image viewer, e.g. cd
textures; eog road.ppm. This texture should be mapped on the road
object (the grey strip running straight through the scene) in such a way
that the full height of the image is mapped along the smallest side of the
strip. Set the correct texture coordinates in road.obj in such a way that
the texture image does not get stretched but is repeated.

You will notice that the texture seems to be drawn only once, i.e. it isn’t
repeated. Alter the relevant OpenGL call(s) to enable texture repeating.
Hint: look at function InitGL and the lecture sheets.

Figure 2: The sky texture, to be mapped onto the skydome

e The green ground plane actually consist of two copies of the polygonal
model defined in ground.obj, separated by the road. Add texture coor-
dinates to the ground plane model so that it is covered with the grass
texture 20 times in one direction and 10 times in the other one, thereby
again not stretching the texture image.

e The house model in the scene (in house.obj) is made up of wall polygons
and roof polygons. Add texture coordinates to the roof polygons so that
the roof texture image is repeated 3 times along the longest side and once
along the other side. The tiles in the texture should be oriented the way
you would expect for a roof, see Figure 1.

There’s two types of wall polygons used in the house: rectangular ones and
5-sided ones. Add textures coordinates to the walls of the house model. Do
this in such a way such that texture coordinates match between different
wall polygons, so the texture should continue fluently from one wall to the
other. The texture image should appear a total of 7 times, when counting
horizontally along the four walls. The texture image should not change
its aspect ratio (the ratio between width and height of the image). This
means the applied texture should not appear to be stretched horizontally
or vertically, compared to the original texture image.

Hint: making a little drawing of the house geometry together with its
dimensions might help here.

e The scene also includes what is known as a skydome. This is a hemi-
sphere surrounding the scene, which acts as a sort of sky. The sky-
dome is not stored in a file but is procedurally generated, by function
createHemisphere() in geometry.c. In the framework displaying of the
skydome is commented out in function DrawGLScene (), to give you a clear
view of the ground plane while texturing it with the grass. Remove the
commenting so the skydome is drawn.

A texture is provided (sky.ppm) that should be mapped on the hemi-
sphere, see Figure 2. If you imagine this image to be rolled up from left to
right into a cylinder, followed by folding the top of the cylinder to come
together in a single point, then you end up with the way the image should
be mapped onto the hemisphere. IL.e., the bottom of the image should run

once around the bottom of the hemisphere (the horizon). The top line of
the image should converge in the top of the hemisphere.

The texture coordinates for the skydome’s vertices are currently all set
to zero. Alter the relevant function(s) in geometry.c so that the correct
coordinates are applied.

If you’ve successfully set the hemisphere texture coordinates, it should be
relatively straightforward to also alter function createCylinder (), which
is used to draw the stem of the tree. Alter this function as well.

2.2 Part 2 - Mip-mapping

You might notice Moiré patterns in the different textured polygons, especially in
the “sidewalk” part of the road, but also on the house walls at certain distances.

These are the places where OpenGL needs to combine several texture pixels
(texels) to obtain the color of a single screen pixel, so-called texture minification.
The default method for this is to use linear interpolation. A better way is to
use mip-mapping, as shown during the lecture.

Enable mip-mapping, by replace the glTexImage2D call with a call to
gluBuild2DMipmaps and setting/changing the relevant texturing parameters.
See the man-pages of gluBuild2DMipmaps and glTexParameteri for details.
Try out the different mip-mapping minification filters that OpenGL provides to
notice the difference and select the one you think works best.

2.3 Part 3 - Using textures as objects

The tree objects so far looks pretty simplistic, i.e. just cylinders with spheres
on top. In DrawGLScene() the trees are drawn with a simple for-loop that
draws the same polygon lists multiple times, each time with slightly different
transformations to put tree objects in different locations.

We haven’t done any texturing yet on the sphere, mostly because it is very
similar to the skydome texturing. We are going to replace the sphere with
something a bit more “leaf-like”. For this, a texture image is provided of a large
leaf from a banana palm, see Figure 3. To mark transparent pixels in this image

Figure 3: A texture of a single leaf from a banana palm

the color red is used. When the image is loaded by the framework these red
pixels are replaced by fully transparent pixels.

For the final part of this assignment you are asked to replace the tree spheres
with simple polygonal objects that are textured using the leaf texture. For this
you will have to both create some geometry and assign the relevant texture
coordinates. This is most conveniently done using a separate .obj file. You
can then read in this file and use the geometry from there. The palm texture is
already loaded by the framework.

Use at least 8 vertices for a leaf and display 5 to 10 leafs at the location of
the sphere (which you can remove), similar to the way a real tree’s leafs would
be organized. If you like to use random numbers for this you can use function
rand float (), which will return a random floating-point value in the range
[0, 1].

See Figure 4 for a possible use of the leaf texture.

3 Tips

You can look at the provided texture images using an image editing/viewing
package like The GIMP (gimp) or Eye of Gnome (eog). With the GIMP you
could even create a special test texture image, to aid you in setting texture
coordinates.

4 Grading

Don’t forget to include the relevant .obj files when sending in your submission!

You can receive up to 6 points for part 1 (setting of texture coordinates 0.5,
road texture 0.5, ground texture 0.5, repeating textures 0.5, house texturing 2,
skydome texturing 1.5, cylindrical texturing 0.5).

You can receive up to 1 point for adding and enabling mip-mapping.

You can receive up to 2 points for the leafs and their texturing.

Figure 4: Multiple leafs on a palm tree

You can get one additional point for writing clean, well-structured and well-
commented code (on the opposite side, unreadable or overly complex code might
cost you a point).

