Computer Graphics — Lab Assignment
Bézier Curves

September 26, 2010

1 Introduction

Bézier curves were developed in the early 1960’s by Pierre Bézier while he was
working for Renault, where he used the smooth curves to design automobile
bodies.

Bézier curves exist in different degrees, differing in the amount of control
points. For example quadratic Bézier curves, having three control points, are
used in Microsoft’s TrueType fonts. Most 3D modeling packages and DTP
software such as Adobe Illustrator can work with cubic Bézier curves, which are
defined by four control points.

Although using more control points for a single curve is theoretically possible,
the computational effort rises and doesn’t really offer much benefit, as individual
smaller Bézier curves can be joined together to form longer smooth curves.

2 Bézier Curves

We repeat here the definition of a Bézier curve P(u) of arbitrary degree n. Here,
u is the curve parameter, with 0 < u < 1. You can also read section 15.6 in the
book of Shirley et. al.

P(u) =Y Bl (u)P; (1)
i=0
Here, Py, P1,..., P, are the n + 1 control points, Bl'(u) is the ith Bernstein

polynomial of degree n:

n

.)u”(l — )"t

]

5w =

You will probably know that (Z) is called the binomial distribution

(1) = m



Figure 1: A Bézier curve (red line) with its 4 control points

and n! is the factorial of n, meaning the product 1-2-...-n. Note that 0! is
defined to have the value 1.

3 Part 1 - Drawing a Bézier curve

In the first part of this assignment you will have to write a function that draws
a Bézier curve of an arbitrary degree on the screen. As a Bézier curve is an
infinitely smooth curve we can’t directly draw it as such. So we’re going to
approximate it using a number of straight line segments.

After building the framework you should have an executable called singlecurve.
This executable uses the functions in bezier.c to draw a Bézier curve of varying
degree.

In bezier.c there are two functions that you have to fill in to correctly draw
the curve:

void evaluate_bezier_curve(float *x, float *y,
control_point p[], int num_points, float u);

void draw_bezier_curve(int num_segments,
control_point p[], int num_points);

See the comments for these functions for more information on what exactly they
should do. See Figure 1 for example output.

The framework provides ways to modify the curve being drawn. The indi-
vidual control points can be moved using the mouse. By clicking and holding
the right mouse button you select the closest control point. If you then move
the mouse the selected point will move along.

The number of segments used to draw the curve can be changed using the [
and ] keys. The degree of the Bézier curve can be changed with - and + (there’s
a maximum of 6 control points).

Test your implementations of the functions by varying the degree of the
curve, moving control points, etc.

Note that the second part of this assignment makes use of the code you write
in this part, so try to make sure it is correct.



4 Part 2 - Using Bézier curves

An area of computer graphics where parametric curves, such as Bézier curves,
are often used is in animation. There, curves are used to control 3D objects
over time, say a race car’s position and orientation on a race track. There’s at
least two ways of using curves for this:

e Specify curve control points in 3D. You could, for example, define a camera
path this way by simply placing curve control points at the necessary
positions in a 3D scene. By varying the curve parameter u as the animation
progresses you can compute updated camera positions for each frame.

e Use parametric curves as 2D functions to control an object’s values, such
as its X position or rotation around the Y axis. This method is more
flexible than having just a 3D path, as you can use curves to control all
kinds of values, not just position. This is the method used in this part of
the assignment.

To make things a bit more clear start the executable called multicurve. If
you did the curve drawing part correctly you should now see a number of colored
lines in the bottom part of the application window. The top part will show a
3D scene (you can manipulate the viewpoint in the latter with the mouse).

Each of the colored smooth lines, which we will call control lines, actually
consists of five cubic Bézier curves. The curves are connected by making the
last control point of a curve be the same as the first control point of the next
curve.

Figure 2: One of the Bézier curves making up the red line

See Figure 2, it shows the first Bézier curve making up the red control
line. The four control points of the curve are encircled. The curve always
runs through its first and last control point (the end points). The two handles
controlling the curve’s slope are shown as grey lines. In the first part of this
assignment the curve was drawn with another line running from the second
control point to the third one. In most 3D applications in which you can work
with curves this line is left out and only lines from the first to second and third
to fourth control point are drawn. This way of drawing the curve highlights



the idea that the grey handles can be used to control the slope of the curve
connected to the corresponding end point.

Manipulation of the curves is the same as in the first part, i.e. using the
right mouse button and dragging. Play around a bit with the curves to see how
to they behave when you move control points. You should notice there are some
constraints on where control points can be placed. Try to figure what the reason
for these constraints is. Also note that the handles allow for local control of a
curve, e.g. the rightmost handle in Figure 2 does not influence the first curve
of the red line, only the second curve.

The current animation time is shown with a vertical yellow line, as can be
seen in Figure 2. The control line values for the current time are shown with
colored markers on the curves.

The 3D scene consists of a “robotic” arm, two rectangular blocks and the
infamous Utah teapot. The movement of the robot arm is controlled by the
control line values for the current time. Three lines determine the rotation
speed (not rotation angle!) of the different parts making up the arm, while the
fourth line determines the grabber opening/closing speed. Only one control line
can be edited at one time, which can be chosen with the keys 1 up to 4.

We need a way to determine control line values as the animation pro-
gresses, to control the arm. For this, function intersect_cubic_bezier_curve
in bezier.c is used. As mentioned above, we use the Bézier curves as 2D func-
tions over time (), while a curve’s value for a certain time is y. For each frame
of the animation the framework will call the function multiple times to test for
intersection between the cubic Bézier curves making up the control lines and
the vertical time line (which is of the form x = current_time).

Tasks:

e Think of a strategy that uses evaluate_bezier_curve to test successive
values of the curve parameter u to find an intersection with the time line
(if there is one). Hints:

1. Remember that due to the constraints placed on control points the
resulting curve can be treated as a function

2. The iteration may produce an approximate intersection point, for
example, one with an x-value that is within 1072 of the searched x.

Fill in function intersect_cubic_bezier_curve in bezier.c based on
your strategy. A curve intersection point returned by this function will
be shown as a colored marker in the curve area of the application by the
framework.

e Edit the control lines to make the arm perform the following task: let it
grab the teapot from the block it’s standing on and place it on the other
block. By starting up multicurve with a file name as argument you can
then save your solution to file. Include this file with the solution code you
hand in.



With the s key you can save the current curves to file, or use r to reload from
file. You can select the file to use as a command-line argument to multicurve
(which defaults to curves.tzt). The application will not allow you to quit when
there are outstanding modifications to the curves, to make sure you don’t acci-
dentally lose any changes. You either need to save the changes to file or reload
the curves from file before quitting.

You can use the a key to toggle the animation on/off or use A to restart it.
Note that it is not possible to jump to a certain time in the animation, because
the physics simulation engine used cannot predict what will happen, nor can
you go backwards in time.

You can put a control point exactly at Y=0 by selecting it and pressing the
z key.

5 Grading

You can receive up to 4 points for a correct implementation of drawing a Bézier
curve (2 for each of the two functions to fill in). The curve drawing functions
should be able to handle curves of arbitrary degree.

Correctly computing the intersection between a curve and the time line can
give you up to 3 points.

Making the robot arm perform the described feat is worth 2 points. If you
don’t manage to place the teapot on the other block you can still get points for
seriously trying.

You can get one additional point for writing clean, well-structured and well-
commented code (on the opposite side, unreadable or overly complex code might
cost you a point).



