
Computer Graphics – Lab Assignment

Shading

1 Introduction

The way an object looks is largely determined by its material properties and the
way light interacts with the object’s surface. Examples of material properties
are an object’s color, if it is shiny or reflective (or perhaps event transparent).

The framework for this assignment displays a scene consisting of a deformed
sphere with a house on top. When the framework program is run, the scene
will look a bit dark and dull. It’s also hard to tell if the green sphere is actually
rounded or not, as it has the same color everywhere. The sphere actually consists
of many small rectangles. Notice that the surfaces of both the house and sphere
have an intrinsic color of their own that is independent on the viewing angle or
the position of the eye of the observer.

OpenGL (and other 3D libraries) distinguish between four different types of
light effects, and each light source can be composed of these different compo-
nents. These effects can be adjusted for different surfaces. Thereby it is possible
to define different materials.

The following two sections about OpenGL lighting and materials are an
excerpt from the OpenGL ”Red Book”, Chapter 6 on lighting.1

2 Light sources

Emitted light is the simplest form - it is light that originates from an object and
is unaffected by any light sources.

The ambient component is the light from that source that has been scattered
so much by the environment that its direction is impossible to determine - it
seems to come from all directions. Backlighting in a room has a large ambient
component, since most of the light that reaches your eye has bounced off many
surfaces first. A spotlight outdoors has a tiny ambient component; most of the
light travels in the same direction, and since you’re outdoors, very little of the
light reaches your eye after bouncing off other objects. When ambient light
strikes a surface, it’s scattered equally in all directions.

1http://fly.cc.fer.hr/~unreal/theredbook/

1



Diffuse light comes from one direction (the direction of the light source),
so it’s brighter if it comes squarely down on a surface than if it barely glances
off the surface. Once it hits a surface, however, it’s scattered equally in all
directions, so it appears equally bright, no matter where the eye is located.
Any light coming from a particular position or direction probably has a diffuse
component.

Finally, specular light comes from a particular direction, and it tends to
bounce off the surface in a preferred direction. A well-collimated laser beam
bouncing off a high-quality mirror produces almost 100 percent specular reflec-
tion. Shiny metal or plastic has a high specular component, but chalk or carpet
has almost none. You can think of specularity as shininess.

Although a light source delivers a single distribution of frequencies, the am-
bient, diffuse, and specular components might be different. For example, if you
have a white light in a room with red walls, the scattered light tends to be red,
although the light directly striking objects is white. OpenGL allows you to set
the red, green, and blue values for each component of light independently.

3 Material Colors

The OpenGL lighting model makes the approximation that a material’s color
depends on the percentages of the incoming red, green, and blue light it reflects.
For example, a perfectly red ball reflects all the incoming red light and absorbs
all the green and blue light. If you view such a ball in white light (composed
of equal amounts of red, green, and blue light), all the red is reflected, and you
see a red ball. If the ball is viewed in pure red light, it also appears to be red.
If, however, the red ball is viewed in pure green light, it appears black (all the
green is absorbed, and there’s no incoming red, so no light is reflected).

Like lights, materials have different ambient, diffuse, and specular colors,
which determine the ambient, diffuse, and specular properties of the material.
A material’s ambient reflectance is combined with the ambient component of
each incoming light source, the diffuse reflectance with the light’s diffuse com-
ponent, and similarly for the specular reflectance and component. Ambient and
diffuse reflectances define the color of the material and are typically similar if
not identical. Specular reflectance is usually white or gray, so that specular
highlights end up being the color of the light source’s specular intensity. If you
think of a white light shining on a shiny red plastic sphere, most of the sphere
appears red, but the shiny highlight is white.

The lighting model used in OpenGL is called Gouraud shading, after Henri
Gouraud who described it in a paper in 1971 2. In this model a color and normal
vector is assigned to each of the vertices in a polygon. Light reflected from the
surface of a polygon is calculated based on the object’s material properties
(ambient, diffuse and specular properties), the surrounding light sources and

2H. Gouraud, ”Continuous shading of curved surfaces,” IEEE Transactions on Computers,
C-20(6):623-629, 1971.

2



the location of the camera. Then the colors at each of the vertices are taken
and interpolated across the whole polygon.

4 Part 1 - Flat shading

In the framework program, only the ambient component of the light source
is working independently of vertex normals. As diffuse and specular lighting
require normals, your first task now is to enable flat shading all over the scene.

Flat shading means that a single surface normal is calculated for a polygon,
and that all vertices defining that polygon are assigned that same normal. As
the normal is used for lighting computations this means that the whole polygon
reflects light in the same way (because all points on the polygon have roughly
the same angle between the surface normal and the light source).

Implement function calcNormalsFlat and assign correct vertex normals for
each polygon (fill the normals array of each poly). Remember that normals
should have unit length for shading to work correctly!

4.1 Correcting normal directions

When you are finished implementing flat shading, look at the shading of the
house. You will probably see that the side walls are not shaded correctly, for
example you will see that there are no dark unilluminated walls (or perhaps you
have only dark walls).

Imagine that if one wall of the house is shown illuminated, the opposite wall
should be dark (as the light is not on the front side of that dark wall). But
both wall polygons receive the same shading because when they are created the
vertices are entered in the same order, and therefore get the same normal vector.

To fix this, you must change the sign of some of the normal vectors, to make
sure that the normal always points in the direction of the outside of the object.
This way we can guarantee consistent shading.

To find out which normals must be reversed, the polygon data structure
provides a vector variable, inside. This variable describes the center point of
the object, so for example in the case of the house it lies somewhere in the
middle, in the case of the sphere inside is its center.

The inside point can be used to correct normal directions. Try to think up
a simple formula that uses the inside point and that enables your program to
check whether computed normal vectors point to the inside or to the outside of
an object. Update your program to make sure the correct normal vectors are
assigned to all polygon vertices.

If done correctly, your program should display the scene as shown in Figure 1.

4.2 Hints

The file normals.c contains a skeleton for the correct computation of normals.

3



Figure 1: Flat shading.

It may a good idea to begin writing a little algebra library with vector
functions. You can use the data type point (defined in polys.h) for the vari-
ables. Later you will find it useful to have functions like normalizeV ector(),
addV ectors(), substractV ectors(), scalarMultiply(), dotProduct() and crossProduct().

You may assume that all vertices of a polygon lie in the same plane, so you
shouldn’t have any problems calculating the plane normal.

5 Part 2 - Gouraud shading

Flat shading works fine for flat surfaces like the walls of the house, but it looks
ugly for the round sphere surface. The small rectangles that make up the sphere
are clearly visible. The problem with the current shading of the sphere is that
there is no smooth change of the normal across polygons. For this we can use
Gouraud shading, which assigns each vertex its own normal vector independent
of a polygon’s other vertex normals. This will make it possible for the video
card rendering the 3D scene to interpolate lighting effects very smoothly over
the surface of a curved object, such as the sphere.

There are different ways to compute a normal vector per vertex based on
normals of adjacent polygons. Here, you can simply compute an average normal
vector, based on the polygons in which a vertex is used. Make sure the resulting
normal vector has length one, otherwise the lighting will be influenced.

When you search through the polygon list to spot corresponding vertices,
bear in mind that two points could be the same even though they are not
completely equal. This can happen due to rounding errors in the floating-point
numbers. Therefore, to check whether two points are equivalent it is better to
check whether their distance is below some fixed small value epsilon (for example
10−6).

4



Figure 2: The final result: flat shading (the house) and gouraud shading (the
sphere) in action.

6 Grading

You can get up to 4 points for a working implementation of flat shading in your
program, and up to 5 points for a working Gouraud shading implementation.

You can get one additional point for writing clean, well-structured and well-
commented code (on the opposite side, unreadable or overly complex code might
cost you a point).

5


