Computer Graphics — Lab Assignment
Ray-Tracing 1

October 11, 2010

’t‘)

A,
o
-

Ray-tracing is a rendering technique that has been around since the late
1970’s, but most people have always perceived it as “slow”. For years it has
been a technique that was mostly of use to create very realistic looking images,
at a price of using hours and hours of computing time. Even companies like
Pixar (of “Finding Nemo” fame) until quite recently only used it for just a few
shots in their movies if regular scan-line rendering could not create a certain
effect, like complex reflections from glass objects.

But ray-tracing has become of quite a lot of interest in recent years as the
possibility of doing ray-tracing in real-time has become a reality. This is mostly
due to Moore’s law of increasing CPU speed, the availability of multi-core/multi-
CPU systems these days together with the fact that ray-tracing is easy to par-
allelize.

In this week’s and next week’s assignment we’re not going to focus on real-
time ray-tracing (sorry), but you will get to discover the basics of the technique.

1 Introduction

1.1 A real quick reprise of ray-tracing

What follows is a really short and high-level description of the ray-tracing pro-
cess for creating an image, as a reminder. Also see the sheets presented at the
lectures and Shirley, Chapter 10.



image plane

Figure 1: Camera in a 3D scene, with one camera ray

From the camera position rays are shot through image pixels into the 3D
scene. A ray starts at a certain 3D coordinate (its origin) and runs straight in
a certain direction. See Figure 1.

Each ray shot is tested for intersection with the objects in the scene. The
first intersection found — the one closest to the ray origin — is used to determine
the surface color “seen” by the ray (the process called “shading”).

A shading routine (also called a “shader”) uses values such as the surface
normal at the point of intersection and the position of light sources to compute
the color at that surface point. The shader can also trace new rays through the
scene to check, for example, from which light sources the surface point to shade
receives light, or to create a reflective surface.

The final color returned for a camera ray is the color seen at that pixel of
the image.

1.2 Framework overview

The framework is fairly elaborate, as it takes quite some code to get a simple
ray-tracer.

There’s also a second file provided, scenes.tgz, that contains a number of
3D scenes. These scenes are used for this week’s and next week’s assignment.
This file should be unpacked in the same directory as where the framework is
unpacked, don’t unpack scenes.tgz within the framework directory!

There’s two types of 3D objects supported: spheres and triangles. We in-
cluded spheres as they nicely show how ray-tracing can support “perfect” objects
that can only be approximated using a large number of triangles when using
scan-line rendering.

The framework uses a very simple file format to describe the 3D scene. See
the files with extension .scn for examples. The file format allows lights to be
specified (position, intensity), allows spheres to be specified (position, radius),
allows the material for an object to be set and allows triangle models to be
read from files with extension .ply (a number of these are included). The main
program expects the name of a scene file as its single argument.

There are two view modes available: an interactive OpenGL view, and a
ray-traced view showing the rendered image. As the ray-tracing process takes



a bit of time to complete (usually a few seconds) the ray-traced view does not
allow the viewpoint to be changed. You can switch between these two modes
with the r key.
A number of predefined viewpoints are available with keys 1 through 6.
Important files are:

main.c Main program

types.h Definitions of several basic types used, such as a triangle,
a light, an intersection point.

scene.h/.c Contains the object in the 3D scene (lights, triangles,

spheres, etc). Also contains some scene specific values,
such as camera position and image background color.
intersection.h/.c | Ray-object intersection code

shaders.h/.c Contains shading routines

v3math.h/.c 3D vector routines

2 Assignment 1 - Camera rays

The first thing to add to the framework is code that shoots camera rays, i.e.
rays shot from the camera position. Each of these rays should shoot through
the center of a pixel and determine the color of that pixel.

Again, see Figure 1. There you see the camera coordinate system, in the
form of the vectors forward, up and right, together with the camera’s position
in the 3D world.

In front of the camera is the image plane. The center of the plane is at a
distance of one unit from the camera position in the forward direction. Look
at function ray_trace() in main.c. This function already computes the image
plane’s size for you (which depends on the field-of-view of the camera) and
contains an almost empty loop over all pixels.

Implement the missing pieces: for each pixel compute the point on the image
plane that is the center of that pixel. Shoot a ray through that point and store
the resulting color in color.

The function ray_color() defined in shaders.h computes the color “seen”
by a given ray for you. This function works for camera rays, as well as reflected
and shadow rays. Its first parameter, level, will become clear further on in this
assignment. Pass the value zero for now. Make sure you pass the correct values
for the remaining parameters.

Test your implementation with the scene silhouette.scn. For this scene, only
a very simple shader is used that simply always returns the color red. This
means that when you correctly implement the computation of viewing rays the
ray-traced view should show a red silhouette of the scene, just like Figure 2(b).

Note: due to the fundamentally different methods of scan-line rendering and
ray-tracing the OpenGL view and ray-traced view might not match up pixel-
perfect, as far as object boundaries is concerned. But differences of more than



one or two pixels probably are a sign that something is wrong in the camera
ray generation.

3 Assignment 2 - Shading

3.1 Introduction

Now that we can trace camera rays we're going to add some more interesting
shaders, so that we can render objects that look like metal, that reflect their
surroundings, etc.

The fundamental operation for a shader is to compute the color as seen by
a ray at the point where that ray intersects an object’s surface. To be able to
determine this color several values are available (see struct intersection_point
in types.h):

P | The coordinates of the point to shade

n | Surface normal at point to shade (normalized)

i | Direction from which the ray responsible for this intersec-
tion came (normalized). This vector points away from the
surface point!

Other values typically used during shading are listed below. Some of these
are available directly in the code, others might need to be computed.

1; | Vector pointing towards light source ¢ (normalized)

Vector halfway between i and 1; (normalized)

r | Direction of a reflected ray (normalized)

cq | A material’s diffuse color (its base color)

A material’s specular color (the color of a highlight)
The intensity of the light coming from light source @
I, | The intensity of the ambient light in the scene

=0

3.2 A simple matte surface

To get more realism we’re going to add a shader that varies the color of a surface
based on the amount of light reaching that point. The contribution of a light
can be computed using the dot product between the surface normal and the
vector pointing to the light source, n - 1;. Note that this dot product can be
negative, depending on whether the light source is on the front or back side of
the surface. In case the light source is on the back there’s no contribution from
that light.

We assume all light sources in the scene shine pure white light, but they
may vary in intensity. We also assume that all lights are point light sources.
See struct light in types.h. There’s also a tiny amount of ambient light in the



scene, which is also pure white, but with a very low intensity (defined by the
variable scene_ambient_light).

Implement shade_matte() in shaders.c so that it returns a color based
on the total light contribution at the point to shade. Note that each of the
three color components must be in the range [0,1]. Test the shader on the
scene matte.scn. See Figure 2(c) for example output. Note: you don’t need to
use the material index anywhere. This is merely a field used internally by the
framework.

3.2.1 Shadows

Next, we're going to add shadows to our matte shader. The insight here is that
if there is some object in the path of a ray from the point to shade to a light
source then there will be no light contribution from that light source.

Add the tracing of shadow ray to the matte shader. Use the function
shadow_check() defined in intersection.h. Again, test with matte.scn. See
Figure 2(d) for example output.

You might notice that the spheres in the scene end up having black speckles.
This is due to self-shadowing. Use a small offset in the ray origin to overcome
this problem.

3.3 Blinn-Phong shading

The next shader you need to write computes a surface color based on three
components: ambient, diffuse and specular intensities. The specular part gives
metallic(-like) surfaces their characteristic look: they have a specular highlight
where a bright spot due to incoming light is visible.

One formulation that allows these kinds of surfaces to be modeled is due to
Jim Blinn and Bui Tuong Phong. It determines the final surface color cs as
follows:

cr=cqg (Ia + kq Z{Ii max(0,n - li)}> + ¢k Z{Ii(n -h)*}
7 K3

The constants kg4 and ks determine the contributions of the diffuse and spec-
ular components, so we can vary these relatively to each other. Note the pa-
rameter « in the last term. This value determines how shiny the surface will
appear. The higher « is set, the smaller the highlight.

Implement shade_blinn_phong() in shaders.c. Use kg = 0.8, ks = 0.5,
a =50, ¢cqg = (1,0,0) and ¢, = (1,1, 1) and include the tracing of shadow rays.
Test with blinn_phong.scn. See Figure 2(e) for example output.

3.4 Reflections

Finally, we're going to create a reflective shader. The trick here is to note that
the visible color of reflective surfaces depends on the color of the surface itself
combined with the color reflected from the surface.



Suppose a ray intersects a reflective surface. To find the color being reflected
we simply shoot a ray from the intersection point in the direction in which the
incoming ray is reflected. This direction depends on the surface normal at the
intersection point and the direction of the incoming ray.

In terms of the values described in section 3.1 the reflected direction r is

r=2n(i-n)—i

One possible problem is that rays might start bouncing around between
reflective surfaces, as each intersection starts a new reflected ray. To overcome
this problem there is a limit on the number of times a ray may be reflected,
which is enforced by ray_color(). Be sure to pass the correct value for level in
your shader.

Implement shade_reflection() so that the surface color returned consists
of 75% matte shading and 25% reflected color. The shader should also do
shadowing. Test with reflections.scn. See Figure 2(f) for example output.

4 Grading

Correct computation of viewing rays can give you 2 points. A working matte
shader (including shadows) can give you 2 points. Correct implementation of
the Blinn-Phong and reflections shaders are worth 2.5 points each.

You can get one additional point for writing clean, well-structured and well-
commented code (on the opposite side, unreadable or overly complex code might
cost you a point).



I

(a) OpenGL view (b) Silhouette shader (c) Matte shader

(d) Matte shader 4+ shadows (e) Blinn-Phong shading (f) Mirror-like shading

Figure 2: (a) OpenGL view, (b)-(f) Ray-traced output for the different assign-
ments



