
Computer Graphics – Lab Assignment

Ray-Tracing 2

November 2, 2010

1 Introduction

After last week’s introduction to the basics of ray-tracing we’re now going to im-
prove the rendered images and make it possible to render 3D models consisting
of thousands of triangles.

2 Speeding up intersection testing

As you know, the basic operation from which ray-tracing derives its name is in-
tersecting a ray with all the 3D objects in the scene and finding the intersection
closest to the ray origin. If you were to do measurements on last week’s frame-
work you would see that the code spends an awful amount of time calculating
intersections of rays with triangles, up to 80% of the rendering time. And the
3D scene we used so far was extremely simple, consisting of only 25 triangles
(and 3 spheres).

The fundamental problem of the code used so far is that for every ray that
is shot it tests that ray for an intersection against every triangle in the scene.
More formally, the intersection algorithm’s execution time is of order O(n) in
the number of triangles, meaning that it performs linearly; if we increase the

1

Figure 1: A (2D) axis-aligned bounding box, with the 3 objects it encloses

number of scene triangles n by 10, testing a ray against the scene will take 10
times as much time. Clearly, we want to be able to use more interesting models
consisting of thousands of triangles, but not at a cost of hours of rendering time.

In this week’s assignment we are going to use a Bounding Volume Hierarchy
(or BVH) to improve on this, giving us a much better O(log n) performance.
For large n, this makes a huge difference. Note that the spheres in a scene are
not handled using the BVH, as there are usually only a few of them.

The basic idea of a BVH is that small groups of triangles (located close to-
gether) are enclosed in a bounding volume, in this case an axis-aligned bounding
box (or AABB for short). An AABB is basically a box-shaped region whose
sides are aligned with the axes of the coordinate system, see Figure 1. Then,
if we need to test a ray against the scene for intersections we can use the fact
that if that ray doesn’t intersect a bounding box it will also not intersect any
of the triangles enclosed by that bounding box. If a ray does intersect the box,
however, it might intersect one of the triangles inside it.

Enclosing small groups of triangles with a bounding box is a start, but it
will merely replace thousands of triangles with hundreds of bounding boxes
containing a handful of triangles each. We still have to test a ray against all of
the boxes.

Going one step further we pick two bounding boxes that lie close together
and compute a new bounding box that encloses that pair. We can continue this
process until we are left with one top-level bounding box that will enclose the
whole scene. By keeping track of which bounding box encloses which two others
we can create a tree of bounding boxes, a BVH.

The nodes of the BVH are either inner nodes or leaf nodes. Inner nodes
always have two child nodes, pointers to which are stored in the inner node.
The second type of node, the leaf node, stores a list of triangles.

Both types of nodes store a bounding box. For inner nodes this bounding
box is guaranteed to surround the bounding boxes of its children The bounding
box of a leaf node is guaranteed to surround all triangles stored in that node.
See Figure 2 (note that the figure shows the nodes in 2D instead of 3D, for
illustration purposes).

Intersection of a ray with a BVH is quite straightforward. We first test if the
ray intersects the root node of the BVH, using the root node’s bounding box.

2

If this bounding box is intersected we check for each of the root’s child nodes
if the ray intersects that child’s bounding box. We traverse down to the child
nodes that are intersected and continue testing for intersections and traversing
down until we reach a leaf node. When we reach a leaf node we check the ray
against all triangles stored in that leaf node. During the traversal of the BVH
we keep track of the triangle intersection closest to the ray origin found so far.

The intersection speed-up a BVH provides comes from the fact that during
traversal we can skip child nodes whose bounding box is not intersected by the
ray being tested. Not only will we skip that single child node, but implicitly
also the whole subtree below it, including the triangles in the leaf nodes. The
subtree skipped this way can contain large parts of the scene.

2.1 Framework

Writing code to build a BVH for the triangles in a 3D scene is quite a bit of
work and would not be possible in the time allocated for the lab session, so the
framework already contains this code. If you’re interested in the build process,
Appendix A contains a description.

The framework will build a BVH for the loaded scene and has functionality
to view the tree nodes, so you can get an idea of how the BVH is organized.
When you load, for example, buddha.scn and press the B key (uppercase) you
will see lots of blue boxes drawn in the scene. These are the bounding boxes
of the leaf nodes. Remember that each leaf node contains a small group of
triangles.

When you press the] key once the blue boxes disappear and a red box
appears. This red box is the root node’s bounding box. When you press] again
you step one level deeper into the BVH and the bounding boxes of the inner
nodes at that level will be shown. With [you go one level higher up in the tree.

2.2 Assignment

What is missing in the framework is a way to use the built BVH to quickly find
groups of triangles that can possibly be intersected by a ray and test them for

Figure 2: a) an inner node with its bounding box (the black rectangle) and the
bounding boxes of its two child nodes; b) a leaf node’s bounding box with the
triangles it contains.

3

intersection. So, what is missing are the pieces for traversing the BVH for a
given ray and finding the closest triangle intersection (if there is any).

Implement the function find first intersected bvh triangle() in intersec-
tion.c. To check for an intersection between a ray and a bounding box you can
use bbox intersect(), declared in bbox.h. For testing a ray against a triangle
you can use ray intersects triangle() in intersection.c.

Test with simple.scn first, before trying cow.scn and buddha.scn. You can
switch between using the BVH or the previous intersection code with the b key,
to verify correctness of your BVH traversal code. This might not be feasible
for the Buddha scene, due to the long rendering times of the non-BVH code for
large numbers of triangles 1.

Note 1: Because of the data type used to implement a BVH node (a C
union) access to its type-specific fields is best done through the functions de-
clared in bvh.h starting at inner node left child().

Note 2: The root node of the BVH is available through the pointer bvh root
declared in bvh.h.

Note 3: Remember that we’re trying to find the first triangle intersection
for a ray. Once we have found a triangle intersection during BVH traversal we
can easily reject BVH nodes that will not give us an intersection closer to the
ray origin. A similar optimization is also possible for the case of deciding which
of the two child nodes of an inner node to process first. Be sure to implement
both these optimizations.

Note 4: The framework prints some statistics at the end of rendering the
image. The average number of triangles tested for intersection per ray is useful
to determine if your optimizations actually improve BVH traversal.

3 Anti-aliasing

If you look at the ray-traced images that the framework renders you might
notice the hard (and ugly) outlines of objects, see Figure 3(a). There you can
see the “staircase effect” on the edge where the ground plane meets the white
background. Similarly, there is a hard edge between the small sphere and the
ground plane in the back.

(a) Without AA (b) With AA

Figure 3: Image quality w.r.t anti-aliasing

1Which was, of course, the reason we introduced the BVH

4

This is due to the fact that we only shoot one ray per pixel, and each pixel
therefore only shows the shading of at most one object. The ray shot through
the pixel next to it might show another object and therefore another shading
value, which might have a noticeably different color.

To overcome this we can shoot multiple rays per pixel and compute the
average color of the colors returned for the rays. This form of anti-aliasing works
reasonably well, as shown in Figure 3(b), as it decreases the color differences
between neighboring pixels.

The framework currently allows you to toggle between anti-aliased and non-
anti-aliased rendering with the a key, which sets or clears the do antialiasing
flag, but anti-aliased rendering is not implemented yet. Alter the function
ray trace() in main.c so that, when do antialiasing is set, it shoots 4 rays per
pixel and averages the resulting colors to get the final pixel color. Conceptually,
each pixel should be divided into 4 sub-pixels (2x2), and a ray is shot through
the center of each of the 4 sub-pixels.

Note that when you’re viewing the ray-traced output and you toggle anti-
aliasing the framework will immediately re-render the image.

4 Grading

A fully correct implementation of the traversal of the BVH which finds the
closest intersected triangle is worth 7 points.

If your implementation doesn’t always correctly find the the first intersec-
tion you can loose up to 2 points. When you don’t include the optimizations
described in Section 2.2 you can also loose 2 points.

Correct implementation of anti-aliasing is worth up to 2 points.
You can get one additional point for writing clean, well-structured and well-

commented code (on the opposite side, unreadable or overly complex code might
cost you a point).

A BVH construction

Here, we shortly describe the procedure used to build the BVH.
Starting with the triangles in the scene we compute the bounding box that

tightly encloses these triangles, and compute along which axis the box is the
longest. We then (conceptually only) place a plane perpendicular to this axis
halfway in the box, dividing it in two equally sized halfs. The triangles then
get sorted into two groups, depending on which of the halfs they overlap most.
For each of the two groups we apply the procedure just described to each group
independently.

At some point the number of triangles left in the current group becomes very
small and it doesn’t make much sense anymore to subdivide into two groups.
In that case a leaf node is created which stores the triangles. In the framework,

5

a leaf node is created when no more than 4 triangles are left. The construction
procedure also creates a leaf node when a maximum tree depth is reached.

6

