
Multivariate Random Variables

Rein van den Boomgaard

31 March 2011

1 Random Variables

� A random variable X is a numerical observation of a random experiment.

� In case the outcome of X is a countable set of values (say X ∈ Z), the rv is discrete and the
probability mass function pX is a mapping from Z to [0, 1] ⊂ R.
Note that

∑
k∈Z pX(k) = 1.

� In case X ∈ R the rv is continuous and the probability density function pX is mapping from R
to R+ (i.e. the set of positive reals).

2 Multivariate Random Variables

� Multivariate pmf pXY Z(x, y, z),
∑

x

∑
y

∑
z pXY Z(x, y, z) = 1

� Multivariate pdf pXY Z(x, y, z),
t

x,y,z pXY Z(x, y, z)dxdydz = 1

3 Multivariate Integrals

y

x

Figure 1: One dimensional integral as Riemann sum

� Scalar (n = 1) ∫ +∞

−∞
f(x) dx

calculates the area under the graph of the function. Here dx is the length of the in�nitesimal
interval and f(x) dx is the area under the curve in the interval dx.

� Multivariate n = 2 ∫ +∞

−∞

∫ +∞

−∞
f(x, y) dx dy

calculates the volume under the graph of the function. Here dx dy is the area of the in�nitesimal
area and f(x, y)dxdy is the volume under the graph in that area.

1

� Multivariate n = 3 ∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
f(x, y, z) dx dy dz

calculates the hypervolume under the graph of the function. Here dxdydz is the in�nitesimal
volume and f(x, y, z)dxdydz is the hypervolume.

� Multivariate

4 Vector Random Variables

� Collect the random variables in a vector X = (X1 · · ·Xn)ᵀ

� Vectorial pmf or pdf: pX(x) = pX1,...,Xn(x1, . . . , xn)

� For the pmf:
∑

x∈Rn pX(x) = 1

� For the pdf:
∫
x∈Rn pX(x)dx = 1

5 Expectation

� Discrete X: E(X) =
∑

x∈Rn x pX(x)

� Continuous X: E(X) =
∫
x∈Rn x pX(x) dx

� Please note that the above is a shorthand notation for:

E(X) =

∫
x∈Rn

x pX(x) dx =


∫
x1
· · ·
∫
xn
x1pX(x)dx1 · · · dxn

...∫
x1
· · ·
∫
xn
xnpX(x)dx1 · · · dxn


� The �rst element of E(X) as given above can be rewritten as:∫

x1

· · ·
∫
xn

x1pX(x)dx1 · · · dxn =

∫
x1

x1

(∫
x2

· · ·
∫
xn

pX(x)dx2 · · · dxn
)
dx1 =

∫
x1

pX1(x1)dx1 = E(X1)

� From the above it follows that: E(X) = E((X1 · · ·Xn)ᵀ) = (E(X1) · · ·E(Xn))ᵀ, i.e. the expec-
tion of a vector stochast is itself a vector and the elements are the expectations of the scalar
elements.

6 Expectation

� Let X and Y be two vector rv's, then E(αX + βY) = αE(X) + βE(Y) (note that this is true
independent of the distributions of the rv's and of the fact whether they are dependent or not).

� Let A be m× n matrix then E(AX) = AE(X)

� Can your prove this? Hint: write out E(AX) in its elements and make use of the fact that
E(a1X1 + · · ·+ anXn) = a1E(X1) + · · ·+ anE(Xn).

2

Figure 2: Scatter plot of two distributions (di�ering only by a rotation)

7 Variance for 2 rv's

� The variance for a scalar rv:
Var(X) = E((X − E(X))2)

is a measure for the expected (squared) deviation from the mean.

� In case of a 2d vector X = (X1 X2)
ᵀ the variance cannot be captured in one number. The spread

of the distribution pX is not only determined by the average distance from the mean, also the
`shape' of the distribution needs to be captured with the notion of the variance.

� A measure like E(‖X−E(X)‖2) does capture the spread around the mean but it cannot capture
the di�erence between the two distributions above (we have plotted 1000 samples from each of
the distributions).

� Can you prove that this spread measure equals the sum of the variances of the elements of
vector X?

8 Directional Variance

� To capture the orientation of the distribution we look at the scalar rv Y = rᵀX where r is a unit
vector (i.e. a direction vector with unit length ‖r‖ = 1).

� Note that Y is the projection of X on a line in the r-direction. Therefore the variance Var(Y)
captures the spread of the distribution of X in the r-direction.

� We have:
E(Y) = E(rᵀX) = rᵀE(X)

� This follows from the fact that E(AX) = AE(X).

3

� For the variance of Y we have

Var(Y) = E((Y − E(Y))2)

= E((rᵀX− rᵀE(X))2)

= E((rᵀ(X− E(X))2)

= E(rᵀ(X− E(X))(X− E(X))ᵀr)

= rᵀE((X− E(X))(X− E(X))ᵀ)r

� Note that E((X− E(X))(X− E(X))ᵀ) is an n× n matrix.

9 Covariance

� The covariance matrix is de�ned as:

Cov(X) = E ((X− E(X)(X− E(X)ᵀ)

� We will often write CX = Cov(X) or simply C in case the random variable is obvious from the
context.

� It captures the variance of X in any directions: Var(rᵀX) = rᵀCXr.

� Note that the diagonal elements of Cov(X) are the variances of the elements of X.

10 Covariance

� Let C = Cov(X) then:

Cij = Cov(Xi, Xj) = E((Xi − E(Xi))(Xj − E(Xj)))

� Thus:

Cov(X) =

Cov(X1, X1) · · · Cov(X1, Xn)
...

...
Cov(Xn, X1) · · · Cov(Xn, Xn)


� Let X, Y and Z be scalar rv's, then:

Cov(aX + bY, Z) = aCov(X,Z) + bCov(Y,Z)

This follows directly from the de�nition and properties of the expectation.

� Let A be a m× n matrix and let X be a vectorial rv, then Cov(AX) = ACov(X)Aᵀ. The proof
is a direct consequence of the property above (and a lot of tedious algebraic manipulation).

11 Correlated Random Variables

� Two rv's X1 and X2 are uncorrelated in case Cov(X1, X2) = 0.

� Consider the random vector X = (X1 Xd)
ᵀ. In case all elements are uncorrelated we have that

the covariance matrix is a diagonal matrix.

� In case X and Y are independent rv's, the rv's are also uncorrelated: X ⊥ Y → Cov(X,Y) = 0.

� The reverse is not nescessarily true! (i.e. the fact that X and Y are uncorrelated doesn't imply
that X and Y are independent).

4

12 The Normal Distribution

� For a scalar rv X that is normally distributed the pdf is de�ned as:

pX(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2

where µ is the expectation: E(X) = µ, and σ2 is the variance Var(X) = σ2.

� Now consider n independent normally distributed rv's X = (X1 · · ·Xn)ᵀ where Xi ∼ N(µi, σ
2
i).

Because of the independence we have:

pX(x) = pX1(x1) · · · pXn(xn)

=
1

σ1
√

2π
e
− (x1−µ1)

2

2σ21 · · · 1

σn
√

2π
e
− (xn−µn)2

2σ2n

=
1

σ1 · · ·σn(
√

2π)n
e
− (x1−µ1)

2

2σ21 · · · e−
(xn−µn)2

2σ2n

=
1

σ1 · · ·σn(
√

2π)n
e
−1
2

((
(x1−µ1)

σ1

)2
+···+

(
(x1−µ1)

σ1

)2
)

=
1

σ1 · · ·σn(
√

2π)n
e−

1
2 (x−µ)

ᵀΣ−1(x−µ)

=
1

|Σ|−1/2(2π)n/2
e−

1
2 (x−µ)

ᵀΣ−1(x−µ)

where:

µ =

µ1...
µn

 and Σ =


σ21 0 · · · 0
0 σ22 · · · 0
... · · ·

...
0 · · · σ2n


13 The Normal Distribution

� A vector rv X is normally distributed X ∼ N(µ,Σ) with:

pX(x) =
1

|Σ|−1/2(2π)n/2
e−

1
2 (x−µ)

ᵀΣ−1(x−µ)

where Σ = Cov(X) is the covariance matrix, that is not necessarily a diagonal matrix.

� For the normal distributed vector rv X ∼ N(µ,Σ) we have: E(X) = µ and Cov(X) = Σ.

14 Transforming Normal Distributed RV's

� Let X ∼ N(µ,Σ) and let Y = AX + b where A is an m× n matrix and b is an m dimensional
vector, then Y ∼ N(Aµ+ b, AΣAᵀ)

15 Generating Samples from N(µ,Σ)

� Assume we have a RNG to generate samples from the scalar normal distribution N(0, 1). Assume
these samples are independent.

� Let Σ = UΛUᵀ be the spectral decomposition of Σ (i.e. the eigenvalue/eigenvector decomposi-
tion).

� Construct a rv X where each element is iid with N(0, 1)

� Let A = U
√

Λ then Y = AX + µ ∼ N(µ,Σ).

5

16 Python Code for Generating Samples from N(µ,Σ)

from pylab import *

mu = array([[5],[6]]) # column vector of required mean

Sigma = array([[2, 1],[1, 2]]) # 2x2 required covariance matrix

d, U = eig(Sigma) # Sigma = U L Ut

L = diagflat(d)

A = dot(U, sqrt(L)) # required transform matrix

X = randn(2,1000) # 2x1000 matrix with each element ~ N(0,1)

Y = dot(A,X)+tile(mu,1000) # 2x1000 each column vector ~N(mu, Sigma)

figure(1)

clf()

plot(X[0],X[1],'+b') # scatter plot of N(0,I) distribution

plot(Y[0],Y[1],'xg') # scatter plot of N(mu,Sigma) distribution

axis('equal')

savefig('figures/normalscatter2dtest.pdf')

5 0 5 104

2

0

2

4

6

8

10

12

Figure 3: Samples from N(0, I) (blue) and N(µ,Σ) (green).

17 Estimating the parameters

� Without proof we state that unbiased estimators for the expectation µ and covariance matrix Σ
are:

µ̂ = x̄ =
1

n

n∑
i=1

xi

and

Σ̂ = S =
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)ᵀ

6

18 Python Code for Estimation of µ and Σ

from pylab import *

First generate data set with known mu and Sigma

mu = array([[5],[6]]) # column vector of required mean

Sigma = array([[2, 1],[1, 2]]) # 2x2 required covariance matrix

d, U = eig(Sigma) # Sigma = U L Ut

L = diagflat(d)

A = dot(U, sqrt(L)) # required transform matrix

X = randn(2,1000) # 2x1000 matrix with each element ~ N(0,1)

Y = dot(A,X)+tile(mu,1000) # 2x1000 each column vector ~N(mu, Sigma)

Ybar = mean(Y,1) # mean along the 1 axis (is second axis..)

Yzm = Y - tile(Ybar[:,newaxis],1000) # subtract mean from each column

S = dot(Yzm, transpose(Yzm)) / 999 # estimator for covariance matrix

print("Ybar"); print(Ybar)

print("S"); print(S)

Ybar

[5.05089187 6.08161091]

S

[[1.9327375 1.03992124]

[1.03992124 2.07102]]

Some remarks about the code:

� Matrix multiplication in Numpy is done with the dot function when dealing with arrays. You
can use matrix instead of array to have * be the matrix multiplication (i do not recommend
this).

� With the function call randn(2,1000) we make an array of 2x1000 numbers, each iid from the
standard normal distribution.

� With dot(A,X) we transform the rv X to have the required covariance.

� With dot(A,X)+tile(mu,1000) we add the required mean to all column vectors in X. With
tile(mu,1000) we repeat the mu vector 1000 times to obtain an array of size 2x1000. This is
typical in languages that have arrays as basis datatypes. Instead of writing (for) loops we �rst
make (large) arrays and then use array operators to combine these. Obviously the loops are still
there but hidden in optimized code and not in interpreted (and slow) code.

19 Exercise: Transforming multivariate rv's

(This exercise is taken from exercises out of the reader written by Bert van Es)
Let X = (X1 X2)

ᵀ be a random vector with expectation µ and covariance matrix Σ given by:

µ =

(
1
−1

)
and Σ =

(
1 0
0 4

)
Calculate the expectation and covariance of

Z =

(
Z1

Z2

)
=

(
X1 +X2

X1 −X2

)
Can we conclude that Z1 and Z2 are independent?

7

20 Exercise: Correlation vs Dependence

(This exercise is taken from exercises out of the reader written by Bert van Es)
Let X = (X1 X2)

ᵀ be a random vector with expectation (0 0)ᵀ (a zero mean random vector) and
covariance matrix

Σ =

(
1 0
0 c

)
for c > 0. For which values of c are the components Z1 and Z2 uncorrelated.

21 LabExercise: Generating & Visualizing Samples from N(µ,Σ)

� Generate a data matrix where each column is a 4-dimensional vector x = (x1 x2 x3 x4)
ᵀ drawn

from a multivariate Normal distribution with mean µ and covariance matrix Σ. Look at the code
in these handouts for inspiration.

� Make a �gure with 12 scatter plots aranged in a 4×4 matrix. At the i, j position (indexed as in a
matrix) draw the scatter plot of xi versus xj . Evidently at the i, i positions there are no interesting
scatterplots to draw. This is a well known way to get a visual overview of multidimensional data
sets. Using matplotlib you will need the subplot function to plot several axes into one �gure.

22 LabExercise: Estimating mean (x̄) and covariance matrix (S)

� From a sample (the datamatrix from the exercise above) calculate the estimators for the mean
and covariance. Experiment to observe that the accuracy of the estimators is dependent on N :
the number of vectors in our sample.

� Repeat the above estimation of µ (for �xed n) and collect all these in a data matrix. For these
estimations you can calculate the covariance matrix as well. Is your result in accordance with
the theory?

23 LabExercise: Scatter Plots of Iris Dataset

In one of the following exercises in this course we will need a well known data set. The data set is
downloaded from the UCI Machine Learning Repository http://archive.ics.uci.edu/ml/. To quote from
the site:

�This is perhaps the best known database to be found in the pattern recognition literature. Fisher's
paper is a classic in the �eld and is referenced frequently to this day. (See Duda & Hart, for example.)
The data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant. One
class is linearly separable from the other 2; the latter are NOT linearly separable from each other.�

Of 150 Iris �owers, 50 of each of 3 classes of Iris's, biologists have measured �SepalLength�, �Sepa-
lWidth�, �PetalLength� and �PetalWidth�. In the data�le there are 150 lines. Each line contains the
four feature measurements separated by a comma and as last item on the line the class of the Iris.

In Python you can use the function loadtxt to read the data from the �le �le:data/iris.data. As we
would like to have the data in a Numpy matrix (a homogeneous data type, meaning that all elements
in the array have the same datatype) we have to convert the class label (in the �fth column) into
a numerical label. The loadtxt function provides an elegant mechanism to accomplish such column
speci�c dataconversion.

De�ne the function cnvt as in

def cnvt(s):

tab = {'Iris-setosa':1.0, 'Iris-versicolor':2.0, 'Iris-virginica':3.0}

if tab.has_key(s):

return tab[s]

else:

8

http://archive.ics.uci.edu/ml/
file:///home/rein/Dropbox/StatisticalReasoning/Handouts/data/iris.data

return -1.0

then the call

data = loadtxt('data/iris.data', delimiter=',', dtype=float, converters={4: cnvt})

will load the Iris dataset as an 150x5 array of �oats. Now the last column encodes the class with a
number.

Write a Python function to make a �gure where in an 4x4 matrix, 12 scatterplots are shown. On
the i, j position (indexing as in a matrix) the scatter plot of the i-th variable on the horizontal axis
and the j-th variable on the vertical axis. The diagonal elements need not be plotted. Make sure that
each of 3 di�erent classes are either drawn in di�erent colors or with di�erent symbols.

Based on the scatterplot, would you think it is doable to write a function that will classify an
unknown feature vector to belong to one of the three classes?

9

	Random Variables
	Multivariate Random Variables
	Multivariate Integrals
	Vector Random Variables
	Expectation
	Expectation
	Variance for 2 rv's
	Directional Variance
	Covariance
	Covariance
	Correlated Random Variables
	The Normal Distribution
	The Normal Distribution
	Transforming Normal Distributed RV's
	Generating Samples from `39`42`"613A``45`47`"603AN(,)
	Python Code for Generating Samples from `39`42`"613A``45`47`"603AN(,)
	Estimating the parameters
	Python Code for Estimation of and
	Exercise: Transforming multivariate rv's
	Exercise: Correlation vs Dependence
	LabExercise: Generating & Visualizing Samples from `39`42`"613A``45`47`"603AN(,)
	LabExercise: Estimating mean () and covariance matrix (S)
	LabExercise: Scatter Plots of Iris Dataset

