| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163 |
- from itertools import combinations
- from .utils import least_common_multiple
- from ..node import ExpressionLeaf as L, Scope, OP_DIV, OP_ADD, OP_MUL
- from ..possibilities import Possibility as P, MESSAGES
- from ..translate import _
- def match_constant_division(node):
- """
- a / 0 -> Division by zero
- a / 1 -> a
- 0 / a -> 0
- a / a -> 1
- """
- assert node.is_op(OP_DIV)
- p = []
- nominator, denominator = node
- # a / 0
- if denominator == 0:
- raise ZeroDivisionError('Division by zero: %s.' % node)
- # a / 1
- if denominator == 1:
- p.append(P(node, division_by_one, (nominator,)))
- # 0 / a
- if nominator == 0:
- p.append(P(node, division_of_zero, (denominator,)))
- # a / a
- if nominator == denominator:
- p.append(P(node, division_by_self, (nominator,)))
- return p
- def division_by_one(root, args):
- """
- a / 1 -> a
- """
- return args[0]
- MESSAGES[division_by_one] = _('Division of {1} by 1 reduces to {1}.')
- def division_of_zero(root, args):
- """
- 0 / a -> 0
- """
- return L(0)
- MESSAGES[division_of_zero] = _('Division of 0 by {1} reduces to 0.')
- def division_by_self(root, args):
- """
- a / a -> 1
- """
- return L(1)
- MESSAGES[division_by_self] = _('Division of {1} by {1} reduces to 1.')
- def match_add_constant_fractions(node):
- """
- 1 / 2 + 3 / 4 -> 2 / 4 + 3 / 4 # Equalize denominators
- 2 / 4 + 3 / 4 -> 5 / 4 # Equal denominators, so nominators can
- # be added
- 2 / 2 - 3 / 4 -> 4 / 4 - 3 / 4 # Equalize denominators
- 2 / 4 - 3 / 4 -> -1 / 4 # Equal denominators, so nominators can
- # be subtracted
- """
- assert node.is_op(OP_ADD)
- p = []
- fractions = filter(lambda node: node.is_op(OP_DIV), Scope(node))
- for a, b in combinations(fractions, 2):
- na, da = a
- nb, db = b
- if da == db:
- # Equal denominators, add nominators to create a single fraction
- p.append(P(node, add_nominators, (a, b)))
- elif da.is_numeric() and db.is_numeric():
- # Denominators are both numeric, rewrite both fractions to the
- # least common multiple of their denominators. Later, the
- # nominators will be added
- denom = least_common_multiple(da.value, db.value)
- p.append(P(node, equalize_denominators, (a, b, denom)))
- return p
- def equalize_denominators(root, args):
- """
- 1 / 2 + 3 / 4 -> 2 / 4 + 3 / 4
- a / 2 + b / 4 -> 2a / 4 + b / 4
- """
- denom = args[2]
- scope = Scope(root)
- for fraction in args[:2]:
- n, d = fraction
- mult = denom / d.value
- if mult != 1:
- n = L(n.value * mult) if n.is_numeric() else L(mult) * n
- scope.remove(fraction, negate(n / L(d.value * mult),
- fraction.negated))
- return scope.as_nary_node()
- MESSAGES[equalize_denominators] = _('Equalize the denominators of division'
- ' of {1} by {2}.')
- def add_nominators(root, args):
- """
- a / b + c / b -> (a + c) / b
- a / b - c / b -> (a - c) / b
- -(a / b) + c / b -> -((a + c) / b)
- -(a / b) - c / b -> (c - a) / -b
- """
- # TODO: is 'add' Appropriate when rewriting to "(a + (-c)) / b"?
- ab, cb = args
- a, b = ab
- scope = Scope(root)
- # Replace the left node with the new expression
- scope.remove(ab, (a + negate(cb[0], cb.negated)) / b)
- # Remove the right node
- scope.remove(cb)
- return scope.as_nary_node()
- # TODO: convert this to a lambda. Example: 22 / 77 - 28 / 77. the "-" is above
- # the "28/77" division.
- MESSAGES[add_nominators] = _('Add the nominators of {1} and {2}.')
- def match_expand_and_add_fractions(node):
- """
- a * b / c + d * b / c -> (a + d) * (b / c)
- a * b / c + (- d * b / c) -> (a + (-d)) * (b / c)
- """
- # TODO: is 'add' Appropriate when rewriting to "(a + (-d)) / * (b / c)"?
- assert node.is_op(OP_MUL)
- p = []
- return p
|