| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226 |
- from src.rules.logarithmic import log, match_constant_logarithm, \
- base_equals_raised, logarithm_of_one, divide_same_base, \
- match_add_logarithms, add_logarithms, expand_negations, \
- subtract_logarithms, match_raised_base, raised_base, \
- match_factor_out_exponent, split_negative_exponent, \
- factor_out_exponent, match_factor_in_multiplicant, \
- factor_in_multiplicant, match_expand_terms, \
- expand_multiplication_terms, expand_division_terms, \
- factor_in_exponent_multiplicant, factor_out_exponent_important, \
- make_raised_base
- from src.node import Scope
- from src.possibilities import Possibility as P
- from tests.rulestestcase import RulesTestCase, tree
- class TestRulesLogarithmic(RulesTestCase):
- def test_match_constant_logarithm(self):
- self.assertRaises(ValueError, match_constant_logarithm,
- tree('log_1(a)'))
- root = tree('log 1')
- self.assertEqualPos(match_constant_logarithm(root),
- [P(root, logarithm_of_one)])
- root = tree('log 10')
- self.assertEqualPos(match_constant_logarithm(root),
- [P(root, base_equals_raised),
- P(root, divide_same_base)])
- root = tree('log(a, a)')
- self.assertEqualPos(match_constant_logarithm(root),
- [P(root, base_equals_raised),
- P(root, divide_same_base)])
- root = tree('log(a, b)')
- self.assertEqualPos(match_constant_logarithm(root),
- [P(root, divide_same_base)])
- def test_logarithm_of_one(self):
- root = tree('log 1')
- self.assertEqual(logarithm_of_one(root, ()), 0)
- def test_base_equals_raised(self):
- root, expect = tree('log(a, a), 1')
- self.assertEqual(base_equals_raised(root, ()), expect)
- root, expect = tree('-log(a, a), -1')
- self.assertEqual(base_equals_raised(root, ()), expect)
- def test_divide_same_base(self):
- root, l5, l6 = tree('log(5, 6), 5, 6')
- self.assertEqual(divide_same_base(root, ()), log(l5) / log(l6))
- def test_match_add_logarithms(self):
- root = tree('log a + ln b')
- self.assertEqualPos(match_add_logarithms(root), [])
- # log(ab) is not desired if ab is not reduceable
- root = tree('log a + log b')
- self.assertEqualPos(match_add_logarithms(root), [])
- log_a, log_b = root = tree('log 2 + log 3')
- self.assertEqualPos(match_add_logarithms(root),
- [P(root, add_logarithms, (Scope(root), log_a, log_b))])
- log_a, log_b = root = tree('-log 2 - log 3')
- self.assertEqualPos(match_add_logarithms(root),
- [P(root, expand_negations, (Scope(root), log_a, log_b))])
- # log(2 / 3) is not desired because 2 / 3 cannot be reduced
- log_a, log_b = root = tree('log 2 - log 3')
- self.assertEqualPos(match_add_logarithms(root), [])
- log_a, log_b = root = tree('log 4 - log 2')
- self.assertEqualPos(match_add_logarithms(root),
- [P(root, subtract_logarithms, (Scope(root), log_a, log_b))])
- log_a, log_b = root = tree('-log 2 + log 4')
- self.assertEqualPos(match_add_logarithms(root),
- [P(root, subtract_logarithms, (Scope(root), log_b, log_a))])
- def test_add_logarithms(self):
- root, expect = tree('log a + log b, log(ab)')
- log_a, log_b = root
- self.assertEqual(add_logarithms(root, (Scope(root), log_a, log_b)),
- expect)
- def test_expand_negations(self):
- root, expect = tree('-log(a) - log(b), -(log(a) + log(b))')
- log_a, log_b = root
- self.assertEqual(expand_negations(root, (Scope(root), log_a, log_b)),
- expect)
- def test_subtract_logarithms(self):
- root, expect = tree('log(a) - log(b), log(a / b)')
- loga, logb = root
- self.assertEqual(subtract_logarithms(root, (Scope(root), loga, logb)),
- expect)
- root, expect = tree('-log(a) + log(b), log(b / a)')
- loga, logb = root
- self.assertEqual(subtract_logarithms(root, (Scope(root), logb, loga)),
- expect)
- def test_match_raised_base(self):
- root, a = tree('2 ^ log_2(a), a')
- self.assertEqualPos(match_raised_base(root),
- [P(root, raised_base, (a,))])
- root, a = tree('e ^ ln(a), a')
- self.assertEqualPos(match_raised_base(root),
- [P(root, raised_base, (a,))])
- root = tree('2 ^ log_3(a)')
- self.assertEqualPos(match_raised_base(root), [])
- root = tree('e ^ (2ln x)')
- l2, lnx = mul = root[1]
- self.assertEqualPos(match_raised_base(root),
- [P(root, factor_in_exponent_multiplicant,
- (Scope(mul), l2, lnx))])
- def test_factor_in_exponent_multiplicant(self):
- root, expect = tree('e ^ (2ln x), e ^ ln x ^ 2')
- l2, lnx = mul = root[1]
- self.assertEqual(factor_in_exponent_multiplicant(root,
- (Scope(mul), l2, lnx)), expect)
- def test_raised_base(self):
- root, a = tree('2 ^ log_2(a), a')
- self.assertEqual(raised_base(root, (root[1][0],)), a)
- def test_match_factor_out_exponent(self):
- for root in tree('log(a ^ 2), log(2 ^ a), log(a ^ a), log(2 ^ 2)'):
- self.assertEqualPos(match_factor_out_exponent(root),
- [P(root, factor_out_exponent)])
- root = tree('log(a ^ -b)')
- self.assertEqualPos(match_factor_out_exponent(root),
- [P(root, split_negative_exponent),
- P(root, factor_out_exponent)])
- def test_match_factor_out_exponent_important(self):
- root = tree('log(10 ^ 2)')
- self.assertEqualPos(match_factor_out_exponent(root),
- [P(root, factor_out_exponent_important)])
- def test_match_factor_out_exponent_make_raised_base(self):
- root = tree('log(100)')
- self.assertEqualPos(match_factor_out_exponent(root),
- [P(root, make_raised_base, (2,))])
- root = tree('log(1000)')
- self.assertEqualPos(match_factor_out_exponent(root),
- [P(root, make_raised_base, (3,))])
- root = tree('log_2(16)')
- self.assertEqualPos(match_factor_out_exponent(root),
- [P(root, make_raised_base, (4,))])
- root = tree('log(99)')
- self.assertEqualPos(match_factor_out_exponent(root), [])
- def test_split_negative_exponent(self):
- root, expect = tree('log(a ^ -b), log((a ^ b) ^ -1)')
- self.assertEqual(split_negative_exponent(root, ()), expect)
- def test_factor_out_exponent(self):
- ((a, l2), l10) = root = tree('log(a ^ 2)')
- self.assertEqual(factor_out_exponent(root, ()), l2 * log(a))
- def test_make_raised_base(self):
- root, expect = tree('log(1000), log(10 ^ 3)')
- self.assertEqual(make_raised_base(root, (3,)), expect)
- root, expect = tree('log_2(64), log_2(2 ^ 4)')
- self.assertEqual(make_raised_base(root, (4,)), expect)
- def test_factor_out_exponent_important(self):
- ((a, l2), l10) = root = tree('log(10 ^ 2)')
- self.assertEqual(factor_out_exponent_important(root, ()), l2 * log(a))
- def test_match_factor_in_multiplicant(self):
- (l2, log_3) = root = tree('2log(3)')
- self.assertEqualPos(match_factor_in_multiplicant(root),
- [P(root, factor_in_multiplicant, (Scope(root), l2, log_3))])
- (l2, log_3), l4 = root = tree('2log(3)4')
- self.assertEqualPos(match_factor_in_multiplicant(root),
- [P(root, factor_in_multiplicant, (Scope(root), l2, log_3)),
- P(root, factor_in_multiplicant, (Scope(root), l4, log_3))])
- root = tree('2log(a)')
- self.assertEqualPos(match_factor_in_multiplicant(root), [])
- root = tree('alog(3)')
- self.assertEqualPos(match_factor_in_multiplicant(root), [])
- def test_factor_in_multiplicant(self):
- root, expect = tree('2log(3), log(3 ^ 2)')
- l2, log3 = root
- self.assertEqual(factor_in_multiplicant(root, (Scope(root), l2, log3)),
- expect)
- def test_match_expand_terms(self):
- ab, base = root = tree('log(2x)')
- a, b = ab
- self.assertEqualPos(match_expand_terms(root),
- [P(root, expand_multiplication_terms, (Scope(ab), b))])
- root = tree('log(2 * 3)')
- self.assertEqualPos(match_expand_terms(root), [])
- root = tree('log(2 / a)')
- self.assertEqualPos(match_expand_terms(root),
- [P(root, expand_division_terms)])
- def test_expand_multiplication_terms(self):
- root, expect = tree('log(2x), log x + log 2')
- self.assertEqual(expand_multiplication_terms(root,
- (Scope(root[0]), root[0][1])), expect)
- def test_expand_division_terms(self):
- root, expect = tree('log(2 / x), log 2 - log x')
- self.assertEqual(expand_division_terms(root, ()), expect)
|