| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263 |
- from src.rules.derivatives import der, get_derivation_variable, \
- match_zero_derivative, match_one_derivative, one_derivative, \
- zero_derivative, match_variable_power, variable_root, \
- variable_exponent, match_const_deriv_multiplication, \
- const_deriv_multiplication, chain_rule, match_logarithmic, \
- logarithmic, match_goniometric, sinus, cosinus, tangens, \
- match_sum_product_rule, sum_rule, product_rule, match_quotient_rule, \
- quotient_rule, power_rule
- from src.rules.logarithmic import ln
- from src.rules.goniometry import sin, cos
- from src.node import Scope
- from src.possibilities import Possibility as P
- from tests.rulestestcase import RulesTestCase, tree
- class TestRulesDerivatives(RulesTestCase):
- def test_get_derivation_variable(self):
- xy0, xy1, x, l1 = tree('der(xy, x), der(xy), der(x), der(1)')
- self.assertEqual(get_derivation_variable(xy0), 'x')
- self.assertEqual(get_derivation_variable(xy1), 'x')
- self.assertEqual(get_derivation_variable(x), 'x')
- self.assertIsNone(get_derivation_variable(l1))
- def test_match_zero_derivative(self):
- root = tree('der(x, y)')
- self.assertEqualPos(match_zero_derivative(root),
- [P(root, zero_derivative)])
- root = tree('der(2)')
- self.assertEqualPos(match_zero_derivative(root),
- [P(root, zero_derivative)])
- def test_zero_derivative(self):
- root = tree('der(1)')
- self.assertEqual(zero_derivative(root, ()), 0)
- def test_match_one_derivative(self):
- root = tree('der(x)')
- self.assertEqualPos(match_one_derivative(root),
- [P(root, one_derivative)])
- root = tree('der(x, x)')
- self.assertEqualPos(match_one_derivative(root),
- [P(root, one_derivative)])
- def test_one_derivative(self):
- root = tree('der(x)')
- self.assertEqual(one_derivative(root, ()), 1)
- def test_match_const_deriv_multiplication(self):
- root = tree('der(2x)')
- l2, x = root[0]
- self.assertEqualPos(match_const_deriv_multiplication(root),
- [P(root, const_deriv_multiplication, (Scope(root[0]), l2, x))])
- (x, y), x = root = tree('der(xy, x)')
- self.assertEqualPos(match_const_deriv_multiplication(root),
- [P(root, const_deriv_multiplication, (Scope(root[0]), y, x))])
- def test_match_const_deriv_multiplication_multiple_constants(self):
- root = tree('der(2x * 3)')
- (l2, x), l3 = root[0]
- scope = Scope(root[0])
- self.assertEqualPos(match_const_deriv_multiplication(root),
- [P(root, const_deriv_multiplication, (scope, l2, x)),
- P(root, const_deriv_multiplication, (scope, l3, x))])
- def test_const_deriv_multiplication(self):
- root = tree('der(2x)')
- l2, x = root[0]
- args = Scope(root[0]), l2, x
- self.assertEqual(const_deriv_multiplication(root, args),
- l2 * der(x, x))
- def test_match_variable_power(self):
- root, x, l2 = tree('der(x ^ 2), x, 2')
- self.assertEqualPos(match_variable_power(root),
- [P(root, variable_root)])
- root = tree('der(2 ^ x)')
- self.assertEqualPos(match_variable_power(root),
- [P(root, variable_exponent)])
- def test_match_variable_power_chain_rule(self):
- root, x, l2, x3 = tree('der((x ^ 3) ^ 2), x, 2, x ^ 3')
- self.assertEqualPos(match_variable_power(root),
- [P(root, chain_rule, (x3, variable_root, ()))])
- root = tree('der(2 ^ x ^ 3)')
- self.assertEqualPos(match_variable_power(root),
- [P(root, chain_rule, (x3, variable_exponent, ()))])
- # Below is not mathematically underivable, it's just not within the
- # scope of our program
- root, x = tree('der(x ^ x), x')
- self.assertEqualPos(match_variable_power(root),
- [P(root, power_rule)])
- def test_power_rule(self):
- root, expect = tree("[x ^ x]', [e ^ ln(x ^ x)]'")
- self.assertEqual(power_rule(root, ()), expect)
- def test_power_rule_chain(self):
- self.assertRewrite([
- "[x ^ x]'",
- "[e ^ ln(x ^ x)]'",
- "[e ^ (xln(x))]'",
- "e ^ (xln(x))ln(e)[xln(x)]'",
- "e ^ (xln(x))1[xln(x)]'",
- "e ^ (xln(x))[xln(x)]'",
- "e ^ (xln(x))([x]' * ln(x) + x[ln(x)]')",
- "e ^ (xln(x))(1ln(x) + x[ln(x)]')",
- "e ^ (xln(x))(ln(x) + x[ln(x)]')",
- "e ^ (xln(x))(ln(x) + x(1 / (xln(e))))",
- "e ^ (xln(x))(ln(x) + x(1 / (x * 1)))",
- "e ^ (xln(x))(ln(x) + x(1 / x))",
- "e ^ (xln(x))(ln(x) + x * 1 / x)",
- "e ^ (xln(x))(ln(x) + x / x)",
- "e ^ (xln(x))(ln(x) + 1)",
- "e ^ ln(x ^ x)(ln(x) + 1)",
- # FIXME: "x ^ x(ln(x) + 1)", -> needs strategy
- ])
- def test_variable_root(self):
- root = tree('der(x ^ 2)')
- x, n = root[0]
- self.assertEqual(variable_root(root, ()), n * x ** (n - 1))
- def test_variable_exponent(self):
- root = tree('der(2 ^ x)')
- g, x = root[0]
- self.assertEqual(variable_exponent(root, ()), g ** x * ln(g))
- def test_chain_rule(self):
- root = tree('der(2 ^ x ^ 3)')
- l2, x3 = root[0]
- x, l3 = x3
- self.assertEqual(chain_rule(root, (x3, variable_exponent, ())),
- l2 ** x3 * ln(l2) * der(x3))
- def test_match_logarithmic(self):
- root = tree('der(log(x))')
- self.assertEqualPos(match_logarithmic(root), [P(root, logarithmic)])
- def test_match_logarithmic_chain_rule(self):
- root, f = tree('der(log(x ^ 2)), x ^ 2')
- self.assertEqualPos(match_logarithmic(root),
- [P(root, chain_rule, (f, logarithmic, ()))])
- def test_logarithmic(self):
- root, x, l1, l10 = tree('der(log(x)), x, 1, 10')
- self.assertEqual(logarithmic(root, ()), l1 / (x * ln(l10)))
- def test_match_goniometric(self):
- root = tree('der(sin(x))')
- self.assertEqualPos(match_goniometric(root), [P(root, sinus)])
- root = tree('der(cos(x))')
- self.assertEqualPos(match_goniometric(root), [P(root, cosinus)])
- root = tree('der(tan(x))')
- self.assertEqualPos(match_goniometric(root), [P(root, tangens)])
- def test_match_goniometric_chain_rule(self):
- root, x2 = tree('der(sin(x ^ 2)), x ^ 2')
- self.assertEqualPos(match_goniometric(root),
- [P(root, chain_rule, (x2, sinus, ()))])
- root = tree('der(cos(x ^ 2))')
- self.assertEqualPos(match_goniometric(root),
- [P(root, chain_rule, (x2, cosinus, ()))])
- def test_sinus(self):
- root, x = tree('der(sin(x)), x')
- self.assertEqual(sinus(root, ()), cos(x))
- def test_cosinus(self):
- root, x = tree('der(cos(x)), x')
- self.assertEqual(cosinus(root, ()), -sin(x))
- def test_tangens(self):
- root, x = tree('der(tan(x), x), x')
- self.assertEqual(tangens(root, ()), der(sin(x) / cos(x), x))
- root = tree('der(tan(x))')
- self.assertEqual(tangens(root, ()), der(sin(x) / cos(x)))
- def test_match_sum_product_rule_sum(self):
- root = tree('der(x ^ 2 + x)')
- x2, x = f = root[0]
- self.assertEqualPos(match_sum_product_rule(root),
- [P(root, sum_rule, (Scope(f), x2)),
- P(root, sum_rule, (Scope(f), x))])
- root = tree('der(x ^ 2 + 3 + x)')
- self.assertEqualPos(match_sum_product_rule(root),
- [P(root, sum_rule, (Scope(root[0]), x2)),
- P(root, sum_rule, (Scope(root[0]), x))])
- def test_match_sum_product_rule_product(self):
- root = tree('der(x ^ 2 * x)')
- x2, x = f = root[0]
- self.assertEqualPos(match_sum_product_rule(root),
- [P(root, product_rule, (Scope(f), x2)),
- P(root, product_rule, (Scope(f), x))])
- def test_match_sum_product_rule_none(self):
- root = tree('der(x ^ 2 + 2)')
- self.assertEqualPos(match_sum_product_rule(root), [])
- root = tree('der(x ^ 2 * 2)')
- self.assertEqualPos(match_sum_product_rule(root), [])
- def test_sum_rule(self):
- root = tree('der(x ^ 2 + x)')
- x2, x = f = root[0]
- self.assertEqual(sum_rule(root, (Scope(f), x2)), der(x2) + der(x))
- self.assertEqual(sum_rule(root, (Scope(f), x)), der(x) + der(x2))
- root = tree('der(x ^ 2 + 3 + x)')
- (x2, l3), x = f = root[0]
- self.assertEqual(sum_rule(root, (Scope(f), x2)), der(x2) + der(l3 + x))
- self.assertEqual(sum_rule(root, (Scope(f), x)), der(x) + der(x2 + l3))
- def test_product_rule(self):
- root = tree('der(x ^ 2 * x)')
- x2, x = f = root[0]
- self.assertEqual(product_rule(root, (Scope(f), x2)),
- der(x2) * x + x2 * der(x))
- self.assertEqual(product_rule(root, (Scope(f), x)),
- der(x) * x2 + x * der(x2))
- root = tree('der(x ^ 2 * x * x ^ 3)')
- (x2, x), x3 = f = root[0]
- self.assertEqual(product_rule(root, (Scope(f), x2)),
- der(x2) * (x * x3) + x2 * der(x * x3))
- self.assertEqual(product_rule(root, (Scope(f), x)),
- der(x) * (x2 * x3) + x * der(x2 * x3))
- self.assertEqual(product_rule(root, (Scope(f), x3)),
- der(x3) * (x2 * x) + x3 * der(x2 * x))
- def test_match_quotient_rule(self):
- root = tree('der(x ^ 2 / x)')
- self.assertEqualPos(match_quotient_rule(root),
- [P(root, quotient_rule)])
- root = tree('der(x ^ 2 / 2)')
- self.assertEqualPos(match_quotient_rule(root), [])
- def test_quotient_rule(self):
- root = tree('der(x ^ 2 / x)')
- f, g = root[0]
- self.assertEqual(quotient_rule(root, ()),
- (der(f) * g - f * der(g)) / g ** 2)
- def test_natural_pase_chain(self):
- self.assertRewrite([
- 'der(e ^ x)',
- 'e ^ x * ln(e)',
- 'e ^ x * 1',
- 'e ^ x',
- ])
|