| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201 |
- from itertools import combinations
- from .utils import find_variables
- from .logarithmic import ln
- from ..node import ExpressionNode as N, ExpressionLeaf as L, Scope, OP_DERIV, \
- OP_MUL
- from ..possibilities import Possibility as P, MESSAGES
- from ..translate import _
- def der(f, x=None):
- return N('der', f, x) if x else N('der', f)
- def get_derivation_variable(node, variables=None):
- """
- Find the variable to derive over.
- >>> print get_derivation_variable(der(L('x')))
- 'x'
- """
- if len(node) > 1:
- assert node[1].is_identifier()
- return node[1].value
- if not variables:
- variables = find_variables(node)
- if len(variables) > 1:
- # FIXME: Use first variable, sorted alphabetically?
- #return sorted(variables)[0]
- raise ValueError('More than 1 variable in implicit derivative: '
- + ', '.join(variables))
- if not len(variables):
- return None
- return list(variables)[0]
- def chain_rule(root, args):
- """
- Apply the chain rule:
- [f(g(x)]' -> f'(g(x)) * g'(x)
- f'(g(x)) is not expressable in the current syntax, so calculate it directly
- using the application function in the arguments. g'(x) is simply expressed
- as der(g(x), x).
- """
- g, f_deriv, f_deriv_args = args
- x = root[1] if len(root) > 1 else None
- return f_deriv(root, f_deriv_args) * der(g, x)
- def match_zero_derivative(node):
- """
- der(x, y) -> 0
- der(n) -> 0
- """
- assert node.is_op(OP_DERIV)
- variables = find_variables(node[0])
- var = get_derivation_variable(node, variables)
- if not var or var not in variables:
- return [P(node, zero_derivative)]
- return []
- def match_one_derivative(node):
- """
- der(x) -> 1 # Implicit x
- der(x, x) -> 1 # Explicit x
- """
- assert node.is_op(OP_DERIV)
- var = get_derivation_variable(node)
- if var and node[0] == L(var):
- return [P(node, one_derivative)]
- return []
- def one_derivative(root, args):
- """
- der(x) -> 1
- der(x, x) -> 1
- """
- return L(1)
- MESSAGES[one_derivative] = _('Variable {0[0]} has derivative 1.')
- def zero_derivative(root, args):
- """
- der(x, y) -> 0
- der(n) -> 0
- """
- return L(0)
- MESSAGES[zero_derivative] = _('Constant {0[0]} has derivative 0.')
- def match_const_deriv_multiplication(node):
- """
- der(c * f(x), x) -> c * der(f(x), x)
- """
- assert node.is_op(OP_DERIV)
- p = []
- if node[0].is_op(OP_MUL):
- scope = Scope(node[0])
- for n in scope:
- if n.is_numeric():
- p.append(P(node, const_deriv_multiplication, (scope, n)))
- return p
- def const_deriv_multiplication(root, args):
- """
- der(c * f(x), x) -> c * der(f(x), x)
- """
- scope, c = args
- scope.remove(c)
- x = L(get_derivation_variable(root))
- return c * der(scope.as_nary_node(), x)
- MESSAGES[const_deriv_multiplication] = \
- _('Bring multiplication with {2} in derivative {0} to the outside.')
- def match_variable_power(node):
- """
- der(x ^ n) -> n * x ^ (n - 1)
- der(x ^ n, x) -> n * x ^ (n - 1)
- der(f(x) ^ n) -> n * f(x) ^ (n - 1) * der(f(x)) # Chain rule
- """
- assert node.is_op(OP_DERIV)
- if not node[0].is_power():
- return []
- root, exponent = node[0]
- rvars = find_variables(root)
- evars = find_variables(exponent)
- x = get_derivation_variable(node, rvars | evars)
- if x in rvars and x not in evars:
- if root.is_variable():
- return [P(node, variable_root)]
- return [P(node, chain_rule, (root, variable_root, ()))]
- elif not x in rvars and x in evars:
- if exponent.is_variable():
- return [P(node, variable_exponent)]
- return [P(node, chain_rule, (exponent, variable_exponent, ()))]
- return []
- def variable_root(root, args):
- """
- der(x ^ n, x) -> n * x ^ (n - 1)
- """
- x, n = root[0]
- return n * x ** (n - 1)
- MESSAGES[variable_root] = \
- _('Apply standard derivative d/dx x ^ n = n * x ^ (n - 1) on {0}.')
- def variable_exponent(root, args):
- """
- der(g ^ x, x) -> g ^ x * ln(g)
- Note that (in combination with logarithmic/constant rules):
- der(e ^ x) -> e ^ x * ln(e) -> e ^ x * 1 -> e ^ x
- """
- # TODO: Put above example 'der(e ^ x)' in unit test
- g, x = root[0]
- return g ** x * ln(g)
- MESSAGES[variable_exponent] = \
- _('Apply standard derivative d/dx g ^ x = g ^ x * ln g.')
|