test_rules_numerics.py 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167
  1. from src.rules.numerics import match_add_numerics, add_numerics, \
  2. match_divide_numerics, divide_numerics, reduce_fraction_constants, \
  3. fraction_to_int_fraction, match_multiply_numerics, multiply_numerics, \
  4. raise_numerics
  5. from src.node import ExpressionLeaf as L, Scope
  6. from src.possibilities import Possibility as P
  7. from tests.rulestestcase import RulesTestCase, tree
  8. class TestRulesNumerics(RulesTestCase):
  9. def test_match_add_numerics(self):
  10. l1, l2 = root = tree('1 + 2')
  11. possibilities = match_add_numerics(root)
  12. self.assertEqualPos(possibilities,
  13. [P(root, add_numerics, (Scope(root), l1, l2))])
  14. (l1, b), l2 = root = tree('1 + b + 2')
  15. possibilities = match_add_numerics(root)
  16. self.assertEqualPos(possibilities,
  17. [P(root, add_numerics, (Scope(root), l1, l2))])
  18. def test_add_numerics(self):
  19. l0, a, l1 = tree('1,a,2')
  20. root = l0 + l1
  21. self.assertEqual(add_numerics(root, (Scope(root), l0, l1)), 3)
  22. root = l0 + a + l1
  23. self.assertEqual(add_numerics(root, (Scope(root), l0, l1)), L(3) + a)
  24. def test_add_numerics_negations(self):
  25. l1, a, l2 = tree('1,a,2')
  26. ml1, ml2 = -l1, -l2
  27. r = ml1 + l2
  28. self.assertEqual(add_numerics(r, (Scope(r), ml1, l2)), 1)
  29. r = l1 + ml2
  30. self.assertEqual(add_numerics(r, (Scope(r), l1, ml2)), -1)
  31. def test_match_divide_numerics(self):
  32. a, b, i2, i3, i4, i6, f1, f2, f3 = tree('a,b,2,3,4,6,1.0,2.0,3.0')
  33. root = i6 / i2
  34. possibilities = match_divide_numerics(root)
  35. self.assertEqualPos(possibilities,
  36. [P(root, divide_numerics, (6, 2, 0))])
  37. root = -i6 / i2
  38. possibilities = match_divide_numerics(root)
  39. self.assertEqualPos(possibilities,
  40. [P(root, divide_numerics, (6, 2, 1))])
  41. root = i3 / i2
  42. possibilities = match_divide_numerics(root)
  43. self.assertEqualPos(possibilities,
  44. [P(root, fraction_to_int_fraction, (1, 1, 2))])
  45. root = i2 / i4
  46. possibilities = match_divide_numerics(root)
  47. self.assertEqualPos(possibilities,
  48. [P(root, reduce_fraction_constants, (2,))])
  49. root = f3 / i2
  50. possibilities = match_divide_numerics(root)
  51. self.assertEqualPos(possibilities,
  52. [P(root, divide_numerics, (3.0, 2, 0))])
  53. root = i3 / f2
  54. possibilities = match_divide_numerics(root)
  55. self.assertEqualPos(possibilities,
  56. [P(root, divide_numerics, (3, 2.0, 0))])
  57. root = f3 / f2
  58. possibilities = match_divide_numerics(root)
  59. self.assertEqualPos(possibilities,
  60. [P(root, divide_numerics, (3.0, 2.0, 0))])
  61. root = i3 / f1
  62. possibilities = match_divide_numerics(root)
  63. self.assertEqualPos(possibilities,
  64. [P(root, divide_numerics, (3, 1, 0))])
  65. root = a / b
  66. possibilities = match_divide_numerics(root)
  67. self.assertEqualPos(possibilities, [])
  68. def test_divide_numerics(self):
  69. i2, i3, i6, f2, f3 = tree('2,3,6,2.0,3.0')
  70. self.assertEqual(divide_numerics(i6 / i2, (6, 2, 0)), 3)
  71. self.assertEqual(divide_numerics(f3 / i2, (3.0, 2, 0)), 1.5)
  72. self.assertEqual(divide_numerics(i3 / f2, (3, 2.0, 0)), 1.5)
  73. self.assertEqual(divide_numerics(f3 / f2, (3.0, 2.0, 0)), 1.5)
  74. self.assertEqual(divide_numerics(i6 / i2, (6, 2, 1)), -3)
  75. self.assertEqual(divide_numerics(i6 / i2, (6, 2, 2)), --i3)
  76. def test_reduce_fraction_constants(self):
  77. l1, l2 = tree('1,2')
  78. self.assertEqual(reduce_fraction_constants(l2 / 4, (2,)), l1 / l2)
  79. def test_fraction_to_int_fraction(self):
  80. l1, l4 = tree('1,4')
  81. self.assertEqual(fraction_to_int_fraction(l4 / 3, (1, 1, 3)),
  82. l1 + l1 / 3)
  83. def test_match_multiply_numerics(self):
  84. i2, i3, i6, f2, f3, f6 = tree('2,3,6,2.0,3.0,6.0')
  85. root = i3 * i2
  86. self.assertEqual(match_multiply_numerics(root),
  87. [P(root, multiply_numerics, (Scope(root), i3, i2))])
  88. root = f3 * i2
  89. self.assertEqual(match_multiply_numerics(root),
  90. [P(root, multiply_numerics, (Scope(root), f3, i2))])
  91. root = i3 * f2
  92. self.assertEqual(match_multiply_numerics(root),
  93. [P(root, multiply_numerics, (Scope(root), i3, f2))])
  94. root = f3 * f2
  95. self.assertEqual(match_multiply_numerics(root),
  96. [P(root, multiply_numerics, (Scope(root), f3, f2))])
  97. def test_multiply_numerics(self):
  98. a, b, i2, i3, i6, f2, f3, f6 = tree('a,b,2,3,6,2.0,3.0,6.0')
  99. root = i3 * i2
  100. self.assertEqual(multiply_numerics(root, (Scope(root), i3, i2)), 6)
  101. root = f3 * i2
  102. self.assertEqual(multiply_numerics(root, (Scope(root), f3, i2)), 6.0)
  103. root = i3 * f2
  104. self.assertEqual(multiply_numerics(root, (Scope(root), i3, f2)), 6.0)
  105. root = f3 * f2
  106. self.assertEqual(multiply_numerics(root, (Scope(root), f3, f2)), 6.0)
  107. root = a * i3 * i2 * b
  108. self.assertEqualNodes(multiply_numerics(root,
  109. (Scope(root), i3, i2)), a * 6 * b)
  110. def test_multiply_numerics_negation(self):
  111. l1_neg, l2 = root = tree('-1 * 2')
  112. self.assertEqualNodes(multiply_numerics(root, (Scope(root), l1_neg,
  113. l2)), -l2)
  114. root, l6 = tree('1 + -2 * 3,6')
  115. l1, mul = root
  116. l2_neg, l3 = mul
  117. self.assertEqualNodes(multiply_numerics(mul, (Scope(mul),
  118. l2_neg, l3)), -l6)
  119. root, l30 = tree('-5 * x ^ 2 - -15x - 5 * 6,30')
  120. rest, mul = root
  121. l5_neg, l6 = mul
  122. self.assertEqualNodes(multiply_numerics(mul, (Scope(mul),
  123. l5_neg, l6)), -l30)
  124. def test_raise_numerics(self):
  125. l1, l2 = root = tree('2 ^ 3')
  126. self.assertEqualNodes(raise_numerics(root, (l1, l2)), L(8))
  127. l1_neg, l2 = root = tree('(-2) ^ 2')
  128. self.assertEqualNodes(raise_numerics(root, (l1_neg, l2)), --L(4))
  129. l1_neg, l2 = root = tree('(-2) ^ 3')
  130. self.assertEqualNodes(raise_numerics(root, (l1_neg, l2)), ---L(8))