| 123456789101112131415161718192021222324252627282930313233343536373839404142434445 |
- from src.rules.integrals import integral_params, choose_constant, \
- match_integrate_variable_power, integrate_variable_root, \
- integrate_variable_exponent
- from src.rules.logarithmic import ln
- #from .goniometry import sin, cos
- from src.possibilities import Possibility as P
- from tests.rulestestcase import RulesTestCase, tree
- class TestRulesIntegrals(RulesTestCase):
- def test_integral_params(self):
- f, x = root = tree('int(fx, x)')
- self.assertEqual(integral_params(root), (f, x))
- root = tree('int(fx)')
- self.assertEqual(integral_params(root), (f, x))
- root = tree('int(3)')
- self.assertEqual(integral_params(root), (3, None))
- def test_choose_constant(self):
- a, b, c = tree('a, b, c')
- self.assertEqual(choose_constant(tree('int(x ^ n, x)')), c)
- self.assertEqual(choose_constant(tree('int(x ^ c, x)')), a)
- self.assertEqual(choose_constant(tree('int(a ^ c, a)')), b)
- def test_match_integrate_variable_power(self):
- for root in tree('int(x ^ n, x), int(x ^ n)'):
- self.assertEqualPos(match_integrate_variable_power(root),
- [P(root, integrate_variable_root)])
- for root in tree('int(g ^ x, x), int(g ^ x)'):
- self.assertEqualPos(match_integrate_variable_power(root),
- [P(root, integrate_variable_exponent)])
- def test_integrate_variable_root(self):
- ((x, n),), c = root, c = tree('int(x ^ n), c')
- self.assertEqual(integrate_variable_root(root, ()),
- x ** (n + 1) / (n + 1) + c)
- def test_integrate_variable_exponent(self):
- ((g, x),), c = root, c = tree('int(g ^ x), c')
- self.assertEqual(integrate_variable_exponent(root, ()),
- g ** x / ln(g) + c)
|